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Abstract

Granular materials, or collections of solid macroscopic particles in contact with each

other, play an important role in chemistry, pharmaceutical sciences, and agriculture.

Despite their importance, little is understood about the force networks formed from

inter-particle contacts in these materials because of the difficulty of modeling large

networks. The challenge lies in finding a model that is specific enough to characterize

the local topology of a cell while still being robust enough to capture information of the

entire network. A recently developed method that may answer this dilemma is swatch

and cloth, which uses adjacency graphs and statistics to model random cell networks.

We discuss how the swatch and cloth model can be applied to force networks and

examine the abilities of swatch and cloth to detect differences in networks extracted

from simulations of granular materials with different sized particles. We also apply

swatch and cloth to communities, or partitioned sub regions, of a force network to

determine which behaviors are uniform throughout the network and which behaviors

tend to cluster in specific regions.

1 Introduction

Granular materials refers to collections of “contacting solid, discrete, macroscopic particles”

[3]. Examples of granular materials include sand, powder, and soil. While granular materials

play significant roles in the chemical, pharmaceutical, and agricultural industries [3], little

is known about how to predict bulk properties, such as a granular material’s ability to retain

heat or absorb water [1]. Through experimentation, materials scientists can classify the

behavior of different materials, but there is still difficulty articulating why certain materials

behave the way they do. If necessary and sufficient characteristics of bulk properties are

identified, materials scientists will be able to create synthetic materials that better suit the

needs of the various industries in which they are used.

Particles in contact with each other possess an interaction force between them; the col-

lection of these forces is the force network. Figure 1b depicts force chains that form when
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(a) (b)

Figure 1: Images courtesy of Google and [1]

granular materials are compressed from outside forces. Subsets of the force network are

sometimes refered to as force chains. A number of materials scientists believe that the key

to predicting bulk properties lies in these force networks [1]. The ultimate goal for many

materials scientists is to find a universal method to characterize such networks to enable

the comparison of different materials; we believe statistical topology could provide such a

method.

In topology, a cell complex is built by attaching n-dimensional cells; for example, a point

is a 0-cell, a line segment is a 1-cell, a disk is a 2-cell, and so on. When the cells are simplices,

complexes have simpler structure and are relatively easy to characterize. In dimension two,

a simplicial complex consists of vertices, line segments, and triangles. Random cell com-

plexes, where, for example, in dimension two the polygons have any number of sides, occur

more frequently in nature and are more difficult to describe and analyze. These are the

complexes that arise in the study of force networks. Figure 2 shows a simplicial complex

and a random cell network. Until recently, there has been no method for characterizing

random cell networks that was detailed enough to give information about the network but

robust enough to apply cell networks in general. Attempts to apply statistical topology to

force networks in granular materials has been met with mixed results. Kramar et al used

persistent homology and persistence diagrams to understand changes in the force networks

of simulated granular materials during compression. However, they found that while their
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Figure 2: A simplicial versus a random cell complex.

analysis provided useful information about the stability of the simulated material, it was

unable to “provide detailed information about the force network structure” [5]. Further,

their probability density function revealed information about the large forces in the system

but “not about the connectivity of the force network” [5]. To address the issue, we turn to

the recently developed method of swatch and cloth.

1.1 Swatch and Cloth

The method of swatch and cloth was developed by Schweinhart, MacPherson, and Mason

[9]. The method is designed for modeling complex systems represented by random cell

complexes K by creating and analyzing the structure of the adjacency graph for K rather

than K itself [8]. The adjacency graph A(K) is a one-dimensional cell complex in which

each vertex represents a cell from the original complex K (see Figure 3). In the figure, each

vertex is color-coded based on the dimension of the cell it represents. Two vertices v1 and

v2 in the adjacency graph only share an edge if the dimensions of the cells they represent

are of dimension k and k + 1, k ≥ 0, and if the cell of dimension k is a face of the cell of

dimension k + 1. Note for the rest of this section, the terms vertices and edges will refer to
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the vertices and edges of the adjacency graph of the cell complex. Schweinhart et al then

use probability distributions of local configurations that are subsets of the adjacency graph

(represented by swatches) to characterize the whole complex (represented by the cloth). To

illustrate the defintions that follow, we use examples of swatches from the force network and

its corresponding adjacency graph in Figure 7 unless otherwise stated.

Figure 3: (a) A cell complex with three 0-cells, three 1-cells, and one 2-cell and (b) it’s
adjacency graph with vertices corresponding to the dimension of the cells they represent [8].
Two vertices of the adjacency graph share a vertex only if the cells they represent have a
difference in dimension of one and if their cells interact in the composition of the original
cell complex.

To define a swatch, we first define the distance between two vertices v1, v2 ∈ A(K).

Two vertices v1, v2 ∈ A(K) are distance r apart if the shortest path between the vertices

along the graph has r edges. For a vertex v ∈ A(K) representing a 0-cell in K, a swatch of

radius r rooted or centered at v is the subgraph of the adjacency graph A(K) that contains all

vertices of A(K) within distance r of the root cell. Each swatch represents a local topological

configuration of the original cell complex K [8]. To illustrate, a swatch with root cell v of

radius 0 is the root cell by itself, a swatch at root cell v of radius 1 is the root cell and all

vertices that are one edge away from v, a swatch at root cell v of radius 2 is the collection of

vertices that are within two edges of the root cell, and so on. An isomorphism of swatches

is a bijection between the vertex sets of the two swatches that maps the root cell of one to

the root cell of the other and preserves the adjacency relationships of the swatches. Two

swatches are equivalent if there exists an isomorphism between them.

A subswatch s0 of a swatch s1 is a swatch with the same root cell as s1 but with a smaller
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Figure 4: Two swatches of radius four with the root cell highlighted in pink, the other 0-cells
in red, and the 1-cells in yellow. The largest common subswatch, circled in both swatches,
has radius r = 3 and has n = 11 vertices, so therefore the distance between them is 1/11.

radius [8]. We say that a swatch s1 descends from an ancestor swatch s0 if s0 is a subswatch

of s1. The collection of distinct, non-isomorphic swatches in A(K) can be given the structure

of a rooted tree called the swatch tree of the complex. The depth or level of a swatch in the

tree is its radius r. Each swatch of radius r is connected by an edge to the unique ancestor

of radius r−1 at the same root. Thus each swatch of radius r is connected to its descendant

swatches of radius r + 1. Figure 5 shows the swatch tree up to radius 4 for the adjacency

graph in Figure 7.

The cloth of a complex K is the swatch tree of A(K) together with a probability distri-

bution at each level r of the swatch tree. Recall that the level r of a swatch tree contains

each unique swatch type of radius r that appears in A(K). The frequency at which a swatch

occurs in the network is the number of root cells in the adjacency graph A(K) at which

the swatch appears. The probability of the swatch is the frequency divided by the total

number of root cells in the network. This defines a probability distribution on each level of

the swatch tree. This distribution is the cloth at level r of the network. The cloth for the

entire network is the collection probability distributions for every level r. Figure 6 shows a

visual representation of two distinct cloths at level 4.

Note that the probabilities of each level of the cloth must add up to 1 and that the

probabilities of the descendants of radius r+1 of a swatch s0 of radius r sum to the probability
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r = 0

r = 1

r = 2

r = 2

r = 3

r = 4

Figure 5: A swatch tree of up to radius 4; assigning probabilities to each swatch gives the
cloth. Red vertices represent 0-cells, while yellow vertices represent 1-cells. In the second
half of the tree, the root cells of the swatches are marked in pink. Note that radii 2-4 show
the subtree as descends from the far left swatch at level 2. A similar branching happens for
all swatches, and thus a swatch tree quickly becomes large.
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of s0 itself. To compare two cloths, we determine the distance dr between cloths at each

level r using the earth mover’s distance. This can be interpreted as the minimum effort to

transform one probability distribution into another [8]. We first define the distance between

two swatches of radius r. The distance between two swatches of equal radii is the reciprocal of

the number of vertices in their largest common subswatch [8]. If two swatches are equivalent,

then the distance between them is 0. See Figure 4 to see an example of two swatches of

radius four and the calculation of the swatch distance between them. The “effort” used

to transform probability distributions depends on the finite set itself; for a cloth of level

r, the effort is calculated using the swatch distance at radius r. The minimum effort for

transforming a cloth at level r is the minimum sum of the costs of all of the operations

needed to transform one probability distribution at level r to another [9]. The cost of each

operation is “the probability mass transferred times the distance between two swatch types”

[9].

To illustrate how to calculate the distance between two cloths at a given level, consider

two level-four cloth distributions on the four swatches shown in Figure 5, displayed again in

Figure 6 with the two cloth distributions.

r = 4

Cloth 1
Cloth 2

1/n
1/n

3/n
1/n

1/n
1/n

1/n
3/n

Figure 6

Assume that there are n total root cells in the network and that the swatches at the

other n−7 root cells have the same frequency distribution in both cloths. For the probability

distributions to be equal, the two probabilites assigned to the same swatch must be equal. In

this example, the second and fourth swatches have different probabilities. To change Cloth 2

to Cloth 1, the probability of swatch four must change from 3/n to 1/n and simultaneously
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the probability of swatch 2 must change from 1/n to 3/n. This equates to “moving” two of the

swatches from type four to type two, which transforms 2/n units of mass of the probability

distribution. From the tree in Figure 5, we see that the largest common subswatch for these

two takes place at level two and has five vertices. The swatch distance is thus 1/5. It

follows that the earth mover’s distance is (2/n)(1/5) = 2/(5n), as this modification of the

distribution requires the minimum effort since it moves the minimum number of swatches

over the minimum possible distance. Therefore, the distance d4 between the two cloths at

level 4 is 2/(5n).

The distance d between two cloths C1 and C2 is the limit of these earth mover’s distances

as the level r approaches infinity. That is,

d(C1, C2) = lim
r→∞

dr(C1, C2).

The distance calculation permits the comparison of the local topological properties of a

complex, global topological properties of a complex, and properties in between to fully detail

how two complexes compare or do not compare to one another. We will apply swatch and

cloth to the complexes that represent force networks in granular materials.

Given a force network, we will build a one-dimensional cell complex where a 0-cell is

the center of a particle and a 1-cell represents a normal contact force between two particles.

We then build the adjacency graph with two vertex types representing the 0- and 1-cells of

the network. From this graph we perform our swatch and cloth analysis. Figure 7 shows a

simulation of a compressed granular material, the force network, and the adjacency graph

for the force network. As far as we know, swatch and cloth has not yet been used to analyze

force networks in granular materials.

1.2 Communities

While the swatch and cloth method provides information about the local characteristics of

a network, it does not reveal where such characteristics occur within the network. There is
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(a) An example of a position force net-
work extracted from 15 bidisperse par-
ticles in contact. Image from [5]

(b) Adjacency graph of network

Figure 7

no information as to whether a swatch type appears with higher frequency in a region of

the network or is distributed throughout the network. As a result, when looking at larger

networks comprised of more than a few vertices, it is difficult to determine where different

network behaviors occur. To address this shortcoming, we use the concept of communities

to understand the local behavior of a random cell network.

Communities are subsets of a network partitioned along areas of less or weaker force

contacts. The partition relies on the value of the modularity Q of a network [1], which is

determined by a number of variables. Define an edge weight between particles i and j as the

magnitude of the contact force between them. Since the magnitudes of the contact forces

were not considered in our simulations, we will say the edge weight between particles i and j

is 1 if they are in contact and 0 if they are not in contact. These values can be represented in

a matrix W where the ijth entry is the edge weight between particles i and j. The predicted

edge weight between i and j is the product of the number of contact forces involving i and

the number of contact forces involving j divided by the total number of contact forces in

the network. This calculation is known as the Newmann-Girvan null model, which is the

most common model used for optimizing the modularity Q, although other models can be

used [1]. The matrix of predicted edge weights is denoted by P , where the ijth entry is the
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Figure 8: The gap factors for all resolution parameters tested for a bidipserse simulation of
400 balls. The maximum gap factor occured at γ = 1.1, so resolution parameter 1.1 was
used to calculate communities.

predicted edge weight between particles i and j. The resolution parameter γ is an arbitrarily

chosen value that determines the partition. The clusters of these partitions are the subsets

of network determined by the resolution parameter. The cluster to which particle i belongs

is denoted ci. Note that ci = cj if particles i and j are in the same cluster as determined by

the partition. The modularity Q of a partition for resolution parameter γ is defined as

Q =
∑
i,j

[Wij − γPij]δ(ci, cj) ,

where i and j represent distinct particles, W is the symmetric matrix of edge weights, P

is the symmetric matrix of expected edge weights, γ is the resolution parameter, ci and cj

are the designated clusters of particles i and j, and δ is the Kronecker delta. The non-zero

contributions to the calculation of modularity are from vertices that are in the same clusters

in a particular partition. For each choice of γ, there is a partition c of the network that

maximizes Q.

To determine which resolution parameter to use for the calculation of Q and thus de-
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termine which network partitions gives the desired communities, a diagnostic called the gap

factor was used. The gap factor gc of a cluster c “measures the presence of gaps and the

extent of branching in a community” [1]. It describes the relationship between the Euclidean

distances between network vertices and the hop distance, or the path of the minimum num-

ber of network edges, between particles within the same cluster. This identifies communities

with branching as opposed to communities that are compact or have linear chains, thus iso-

lating force chains within the same community. The gap factor gc for a cluster is calculated

as

gc = 1− rcsc
smax

,

where rc is the Pearson correlation between the hop distance and the Euclidean distance

between particle pairs in cluster c, sc is the number of particles in cluster c, and smax is the

number of particles in the largest cluster of the partition [1]. The gap factor g for the entire

network is given by

g = 1− 1

n

∑
c

rcsc
smax

,

where n denotes the number of clusters in the partition [1]. Selecting the partition that

maximizes the gap factor produces the desired communities; Figure 8 shows the different

gap factors for different gamma values tested for the simulation in Figure 9. We will further

detail our methods for calculating communities in the Methods and Materials section.

The method of swatch and cloth can be applied to communities within a force network

and communities between force networks. This allows us to determine whether behavior

is localized to a particular area of the network or whether the behavior occurs consistently

throughout the network. Figure 9 shows the stages a force network as it is extracted from

the jammed simulation and partitioned into communities.

1.3 Purpose

The goal of our project is to apply swatch and cloth to both entire force networks and com-

munities within force networks to determine which networks can be distinguished by swatch
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(a) 400 Bidisperse particles
jammed

(b) It’s corresponding
position network

(c) It’s communities, color
coded accordingly

Figure 9: A bidisperse simulation with 400 balls of radius 4 (blue) and radius 5 (red) shown
at jamming, the extracted position network from the jammed state, and the communities
color coded for that network.

and cloth. The cell complexes for force networks were derived from computer simulations of

particles in motion inside a walled container being compressed until no further compression

is possible. We say that these particles are jammed. Note that due to limitations in software,

we were only able to extract and analyze the position networks, or the networks in which all

edges are evenly weighted, rather than calculating the true force magnitudes for all contact

forces of an interaction network.

We examined monodisperse and bidisperse simulations of various sizes and applied swatch

and cloth to examine whether the jammed networks of different types were significantly

different. By monodisperse, we mean a simulation in which all particles have the same mass

and radius, whereas by bidisperse, we mean there is a 50-50 distribution of two types of

particles that have equal densities but different radii.

For communities, we ran bidisperse simulations with different numbers of balls, identified

the communities, and then compared the networks of the communities to each other to

observe whether communities were universally the same across networks or whether they

were dependent on the simulation from which they came. We also compared the cloths of

communities to cloths of whole networks to determine if certain characteristics of the whole

networks were clustered or whether they were distributed throughout the network.
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2 Methods and Materials

To collect and analyze data of force networks in granular materials, we used three major

pieces of software: a simulation of granular materials based on the software written by

Stepen Sahrun [7], a program written by Benjamin Schweinhart to calculate and compare

cloths [8], and Generalized Louvain software to detect and identify communities [4]. Note

that Schweinhart’s software implements NAUTY [6] to analyze the adjacency graphs for

cell complexes and to determine distinct swatch types at a given radius up to isomorphism.

NAUTY (No AUTomorphism, Yes?) is a graph isomorphism testing progarm developed by

McKay and Piperno [6].

The simulations of granular materials were run in MATLAB. The final software was based

on Sahrun’s program that simulates elastic collisions between balls. We modified his code

to increase physical accuracy of the elastic, frictionless collisions and to implement moving

compressing walls. In each simulation, a number of balls of predetermined sizes and densities

were placed randomly in a rectangular box with randomly assigned velocities. Each collision

between balls was assumed to be elastic, and each of the balls were considered to have no

friction and to have perfect rigidity, meaning they did not change shape from collisions. At

the start of each simulation, the boundaries of the rectangular box moved towards the center

of the box at a constant velocity, thus decreasing the area in which the balls were moving.

The collisions between the balls and the walls were considered completely elastic, and the

walls were also frictionless. The simulation finished when it reached a point of jamming,

or a state in which the balls were fully compressed and the walls could not move in any

further. In the jamming state, almost all balls are in contact with at least one other ball

and thus there are many contact forces appearing in the simulation. The information for

each particle, including mass, radii, Euclidean coordinate positions, and velocity, as well as

the final positions of the boundaries were recorded at the finish of each simulation. Figure

10 shows a simulation at the start and end of the program.

Because the simulation significantly slowed when the balls reached too high of a velocity

and the time step between collisions approached zero, initial speeds were capped at 12.5
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Figure 10: A bidisperse simulation of 100 balls at the start of the program and at the end
of the program when it had reached a state of jamming.

units per second, and maximum speeds were restricted to 25 units per second. The slowing

of the program was caused by the balls picking up speed with each collision, as collisions

were elastic and thus no kinetic energy left the system. This caused the program to have

to adjust for collisions in extremely small time increments, which prevented the simulation

from reaching the jammed state. Finally, all particles in simulations were disks. Even though

most macroscopic particles in granular materials are not perfectly round, most simulations

of granular materials use disks as they are easiest to program and the shapes’ effects on

overall data are relatively small [3]. Specific parameters of the simulations ran for testing

hypotheses are outlined below.

Since most balls were not in perfect contact at the end of a simulation, we introduced a

small scalar value ε. Balls within 2ε of each other were considered to be in contact. The use

of “growing” radii of balls is similar to that outlined in [2]. For the majority of our network

calculations, an ε smaller than 20% of the radius of each ball was used. Schweinhart’s

swatch and cloth software calculated the cloths for the resulting networks at different radii

starting at 2 and ending at 10, going only slightly further than Schweinhart et al did in
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their analysis. They found that most calculations beyond radius 8 did not reveal novel or

interesting information about a network or the relationship between two networks. [9]

Generalized Louvain software was used for community detection in MATLAB [4]. Since

this program requires that networks be fully connected, that is, every vertex shares at least

one edge with another vertex, the choice of ε’s played an important role. For any given

network, ε was chosen to be the minimum value at which all vertices shared at least one

edge with another vertex. This provided the smallest possible single component network

containing the jammed network. The genLouvain software calculates the partition for the

Newmann-Girvan null model that maximizes the modularity of Q for the given γ. The reso-

lution parameter γ that maximized the gap factor g and thus partitioned the communtities

correctly was calculated by the same methods outlined in Bassett et al [1]. For each network,

values of γ from 0.1 to 2.1 were tested in increments of 0.2. The optimal partition of the

network for the value of γ that optimized the value of g was the chosen partition for the

network [1]. The networks for the resulting communities were also analyzed by Schweinhart’s

software and compared to one another.

To test whether swatch and cloth could detect differences between two types of networks,

a reference set was selected from one type of simulation. This was compared to two test

sets, one from the same type as the reference set and the other from the second simulation

type. The reference set consisted of a random sample of 20 simulations of one type. The

test sets consisted of 40 simulations of the same type as the reference set and 40 simulations

of the second type. Two distance sets, one for each test set, were then calculated; each

distance set contained the distances between all pairs of reference set simulations and test

set simulations. A t-test that assumed different variances was applied to the two distance

sets to detect a difference of means at the 5% level of significance. To account for possible

outliers, for any two simulation types, the process was repeated 25 times with reference sets

from the first type and 25 times with reference sets from the second type. Two types of

networks were considered significantly different if the difference of means between distance

sets were significant regardless of which simulation type was used for the reference set.
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Simulations of size 100 balls were tested for whether swatch and cloth was able to detect

differences in cell networks extracted from monodisperse simulations and bidiperse simula-

tions varying in radii and number of balls in the simulation. The monodisperse simulations

consisted of particles of radius 4. The bidisperse simulations had distributions of approx-

imately 50% balls of a smaller radius and 50% balls of a larger radius. The bidisperse

simulations were of granular materials with paired particle radii 2 and 7, 3 and 6, and 4

and 5. Figure 11 has images of the jammed simulations, the extracted network, and the

adjacency graph of each type. The ε values used to determine the force networks were fixed

for simulations of the same type. The following table shows these ε values for each type of

simulation:

Sim. Type 2-7 3-6 4-5 4

ε 1.44 0.95 0.8 0.77

At these values of ε, the majority of networks were connected save for a few outlying particles

in each network; increasing ε further would present the risk of losing network information.

The distances between cloths were calculated both from the same and from different sim-

ulation types at every radii considered for each of the networks. The goal was to detect if

there was a significant difference in networks extracted from particle simulations of different

radii/size distributions. The results are listed in the next section.

We also ran large bidisperse simulations of radii 4 and 5 with 400, 600, and 1000 balls.

Their cloths were compared to the simulations of 100 balls to determine whether the size of

the simulation had any effect on the resulting cloth. Their ε values, which were calculated

as above, were as follows:

Sim. Size 100 400 600 1000

ε 0.8 0.93 2.85 1.117

For these simulations, we also extracted their communities and applied swatch and cloth.

The goal was to compare communities within the same network to each other and to large

networks as well as communities across different networks. Most of the data and analysis
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Figure 11: Examples of jammed states, corresponding networks, and adjacency graphs for a
2-7 Bidisperse distribution, a 3-6 Bidisperse distribution, a 4-5 bidisperse distribution, and
a monodisperse distribution.
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was from the simulations of 400 balls, as the 600 ball and 1000 ball simulations were com-

putationally expensive. Thus, we were unable to produce the necessary amount of data for

analyis in the time alloted for this project. However, we did analyze the available networks

from larger simulations; their potential in further research is discussed in the conclusion of

the paper. Additionally, the cloths for communities were only calculated up to radius 5

rather than radius 10 as some of the communities contained only 20 particles; the small size

meant that any swatches larger than radius 5 would contain most of if not the entire commu-

nity. Note that no community analysis was performed on the 100 ball simulations, as those

networks were too small to produce meaningful communities for analysis. We also restricted

our work to internal communties, or communities made up entirely of balls that were not

adjacent to the compressing borders of the simulation, in order to avoid a “boundary effect.”

3 Results and Discussion

3.1 Mono- and Bidisperse Simulations of 100 Balls with Different

Particle Sizes

When calculating the cloths for each network, we noticed that by radius four, most of

the swatches in the swatch trees only appeared once. Swatches that appeared more than

once usually only appeared two or three times and rarely more. The uniqueness of swatches

increased with radius; in most networks, at larger radii, there are perhaps one or two swatches

that repeated if there are any at all. This was consistent across all simulation types and

sizes. This is by no means surprising given the simulations; root cells had degrees varying

from 0 to 7. However, considering the large number of swatches at levels greater than three,

the following results become more meaningful.

In comparing the test sets for 100 ball simulations, we found that swatch and cloth

was able to differentiate between some of the simulations of different types but not others.

Figures 12 and 13 show the heat maps for distances between individual simulations of each

type. In Figure 12, we see that the swatch and cloth method was able to distinguish between
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bidisperse simulations with radii of 2 and 7 and all other simulation types at all cloth levels

tested. In the statistical analysis, when reference sets were taken both from the 2-7 bidisperse

simulations and the other simulations, the null hypothesis of no difference between mean

distances between simulations of the same and different types was rejected every time at a

negligible level of significance averaging 1 × 10−15. This result is not surprising given the

unique structure of the 2-7 networks visible in Figure 10. Swatch and cloth was also able to

distinguish at all levels between the bidisperse simulations of radius 3 and 6 and bidisperse

simulations of radius 4 and 5, with a p-value usually in the range of 1× 10−8; these results

are visible in the first row of heat maps in Figure 13. Again, given the networks extracted

from both simulation types, this result was not surprising.

A surprising result, however, involved the monodisperse distributions of radius four.

There was inconclusive evidence at all levels that swatch and cloth distinguished between

the monodisperse simulation networks and the bidisperse simulations network of radii 3 and

6 and of radii 4 and 5. While the statistical analysis with reference sets in either bidiperse

simulations did demonstrate a significant difference of means of distances between the bidis-

perse and monodisperse networks, when the reference set was drawn from the monodisperse

simulations, the two means were not significantly different. This may not come as a surprise

for the 4-5 bidisperse simulation and the 4 monodisperse simulation, as they share a common

radius and their networks appeared fairly similar, but the lack of difference in distances be-

tween the monodisperse simulations and the 3-6 bidisperse simulations was surprising. Not

only did the simulations and the resulting force networks appear different but also swatch

and cloth distinguished between 4-5 bidisperse simulations and 3-6 bidisperse simulations, so

if 4-5 bidisperse was indistinguishable from monodisperse, one would think that swatch and

cloth also would have distinguished between monodisperse and 3-6 bidisperse. Given that

the difference was not statistically significant when the reference set came from monodisperse

simulations, perhaps there was more variation in the networks extracted from monodisperse

simulations than there were in the networks extracted from 4-5 and 3-6 bidisperse simula-

tions. Thus, the mean distances could not be significantly different when the reference set
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consisted of monodisperse simulations.

2-7

3-6

2-7 3-6

2-7

3-6

2-7 3-6
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3-6

2-7 3-6
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Figure 12: Results of distances between 2-7 Simulations and 3-6 Bidisperse, Radius 4
Monodisperse, and 4-5 Bidisperse Simulations. Each image shows a heat map where each
square represents a distance between two cloths at radius 2, 5, or 8 between simulations
either of the same or different types. The green indicates that the distance is below the
mean distance of the matrix, while the red indicates a distance above the mean. Swatch and
cloth successfully discerned 2-7 bidisperse networks from all other simulation network types.

3.2 4-5 Bidisperse Simulations of 100, 400, 600, and 1000 Balls

We ran bidisperse simulations of radii 4 and 5 that had 100 balls, 400 balls, 600 balls, and

1000 balls to determine whether the size of the network affected the cloths. The resulting

heat maps of the distance matrices are shown in Figure 14. For this statistical analysis,
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Figure 13: Results of distances between 3-6 Bidisperse, Radius 4 Monodisperse, and 4-
5 Bidisperse Simulations. Each image shows a heat map where each square represents a
distance between two cloths at radius 2, 5, or 8 between simulations either of the same
or different types. The green indicates that the distance is below the mean distance of
the matrix, while the red indicates a distance above the mean. These figures show that
while swatch and cloth was able to pick up a difference between the 3-6 and 4-5 bidisperse
simulation networks, it was unable to distinguish between the 4 monodisperse and the 3-6
and 4-5 bidisperse simulation networks.
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because there were only 27 jammed simulations of 400 balls, 8 jammed simulations of 600

balls, and 2 jammed simulations of 1000 balls, we took the reference set for comparisson

only from the set of simulations of 100 balls. In testing the hypotheses, we found significant

differences in the networks of simulations of size 100 balls and the networks of sizes 400

and 1000 balls, while the networks of simulations of size 100 balls and of size 600 balls had

no significant difference. These results are surprising because while the simulations were

sized differently, we hypothesized that there would be no distinguishable difference in the

networks, as the simulations were of balls with the same radii and densities. The variance in

the networks could be cited due to the increasing number of swatch types that follows from

increasing the network size or the different epsilon values used across the simulation sizes.

3.3 Communities

In total, 113 internal communities were identified from the 27 bidisperse simulations of 400

balls, 49 internal communities were identified from the 8 bidisperse simulations of 600 balls,

and 1 internal community was identified from the two simulations of 1000 balls. Communities

were compared both to each other and to the whole networks from which they came using

the same technique of reference sets and test sets as before. For the internal communities

from networks of 400 particles, there was a significant difference in the distance between 400s

communities and the distance between 400s communities and communities from networks of

size 600 and 1000. On the other hand, communities identified in networks of size 600 particles

were not significantly closer to themselves in distance than they were to communities from

simulations of 400 and 1000 balls. In comparing communities to the whole networks from

which they were identified, 400s communities were significantly different from the whole 400

networks, while 600s communities were not significantly different from the whole networks

of 600 balls. This indicates that there may be isolated behavior happening within the

400 networks and that there may be more uniform behavior in the 600 networks, although

there is insufficient data to conclude this definitively. There was also insufficient data to

extensively analyze 1000s communities and whole networks, but the distance between the
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Figure 14: Heat maps for all bidisperse simulations of balls of radii 4 and 5, of sizes 100,
400, 600, and 1000. The heat maps support that the 400 and 1000 ball simulations were
significantly distanced from the 100 simulations, while the 600 simulations were not.
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Figure 15

whole networks was almost eight times smaller than the distance between each network and

the internal community. Figure 15 summarizes the distances between all communities and

all their whole networks.

One interesting general result was that any networks compared were either close in dis-

tance across all level of the cloth or far in distance across all cloth levels. There were no

networks that, when compared, were close or indistinguishable at the smaller levels of the

cloth and then farther apart at larger levels. This poses the question of whether two such

networks exist in granular materials in regards to monodisperse and bidisperse distributions.

24



4 Conclusion and Further Work

This work is a first step of applying swatch and cloth to force networks in granular materials

to outline their bulk properties.

First, we believe that as larger networks hold more information regarding the behavior of

a force network, especially since 100 macroscopic particles is a very small number in compar-

isson to the millions of Voronoi points Schweinhart et al observed [9]. We are interested to

see how our observations compare to networks that have thousands and tens of thousands of

macroscopic particles. In the same vein, observing the communties of these larger networks

would be fascinating and comparing them to each other and to those from smaller networks.

The communities calculated for most of the networks tended to be compact rather than

contain true force chains; using a different value of ε or using a different null model may

impact the types of communities that are partitioned and thus their distances from each

other and the entire network.

Second, there is more to explore along the study of bidisperse simulations. In our sim-

ulations, we assumed a 50-50 distribution of small and large paticles in the bidisperse sim-

ulations. One could examine how the cloth of a network is affected when that distribution

is changed, for example, to 20-80, or 40-60, or 75-25. In these simulations, one could look

again at different particle sizes within a distribution or look at same particle sizes across

distributions, using swatch and cloth to assess the differences in the networks arising from

both cases. Further, in this data set, swatch and cloth was only able to distinguish bidisperse

simulations of different sizes from each other. It would be interesting to consider simulations

with three or more particle sizes. Not only could one look at the difference in networks

along polydisperse distributions, but also one can examine whether swatch and cloth can

distinguish polydisperse simulations from bidisperse or monodisperse simulations.

Finally, there are many questions surrounding characteristics other than sizing of the

simulation particles that likely affect bulk properties. Another route of research would be to

assess the ability of swatch and cloth to pick up on other possible characteristics of a granular

material, such as inelastic collisions, particles of different shapes, various coefficients of static
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and kinetic friction, and polydisperse simulations. Should swatch and cloth identify these

characteristics, one could potentially predict swatch and cloth behavior for various materials

and thus predict how to manipulate bulk properties. Another interesting approach would be

to take actual force network data from granular materials and attempt to identify different

cloths based on the bulk properties of the materials and characteristics of the material. While

simulations give a glimpse as to how swatch and cloth assesses granular materials, they are

merely simulations and are no substitutes for the granular materials themselves.

We hope that this research helps to solidify swatch and cloth as a legitimate method for

mapping random cell networks in nature and that others will be inspired to apply it to other

disciplines where such networks arise.
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