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Abstract. A link is a smooth embedding of a finite number of disjoint copies of S1 into S3.
Links of one component are known as knots. We are particularly interested in twisted torus
links, as no complete classification of them currently exists. Specifically, we are interested
in finding ways to determine the number of components in a twisted torus link. Twisted
torus links of one component are especially interesting because there exist more ways to
classify knots than there are ways to classify links. In this paper, we will examine patterns
in the parameters of a twisted torus link that reveal general and specific information about
components.

1. Introduction

A knot is a smooth embedding of a circle, S1 into S3, and a link is a finite collection of
disjoint knots. If a knotK is part of a link L then we say that K is a component of L. A knot
can be thought of as a link of one component. The study of knots and links is a rich area of
low dimensional topology with applications to other areas of mathematics. One simple
family of links is the collection of torus links, which are curves that can be embedded
on a torus. The torus link T (p,q) intersects the meridian of the torus p times and the
longitude q times. Because there is an automorphism of S3 that switches the meridian
and the longitude of the torus, the torus links T (p,q) and T (q,p) are isotopic, meaning
one can be deformed into the other through such an automorphism. When p and q are
co-prime, T (p,q) is a knot. A much more interesting, not well-understood family of links
is that of double torus links, which are links that can be embedded on an orientable genus
two surface. In this paper, we study a generalization of double torus links called twisted
torus links, which we will define below.

∗ Corresponding author
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One avenue for studying these types of links is by considering their braid representations.
A braid on n strands is the union of n non-intersecting paths in the cylinder S1×[0,1] that
all start at one of n points in the circle S1 × 0 and end in one of the same n points in the
circle S1 ×1 such that each cross-section S1 × i contains exactly n points. This means that
all the paths are always descending as they move through the cylinder. The closure of
a braid is defined by joining the i-th point in S1 × 0 to the i-th point in S1 × 1. Figure 1
depicts a braid and its closure. Every link can be expressed as the closure of a braid [1,
p. 129]. The interested reader can learn more about knots, links, and braids in the book
The Knot Book by Colin Adams [1].

Figure 1. A 3-strand braid and its closure.

A braid on n strands can be described as a series of crossings on two consecutive strands.
σi denotes the ith strand passing over the i − 1st strand, and σ−1

i denotes the ith strand
passing under the i − 1st strand, which, if occurring immediately before or after σi , is
equivalent to the ith and i−1st strands having no crossings. Given two braids on n strands
β1 and β2, we can form a new braid β3 by concatenating the braids, or placing the top of
β2 under the bottom of β1 so that β3 is the braid consisting of first β1 followed by β2. We
use β3 = β1 · β2 as shorthand for concatenation. Braids on n strands form a group under
concatenation, which we denote Bn. The identity element is the braid with no crossings,
its generators are the σi , and the inverse of σi is σ−1

i . A group presentation for Bn is

Bn = 〈σ1, . . . ,σn−1 | σiσi+1σi = σi+1σiσi+1,σiσj = σjσi when |i − j | ≥ 2〉.

A specific sequence of crossings can be grouped together and called a twist. A single
positive twist on n strands is denoted by the braid word σ1 · · ·σn−1 and a single negative
twist is given by the braid word σ−1

1 · · ·σ
−1
n−1. A full positive twist on n strands is n single

positive twists next to each other or (σ1 · · ·σn−1)n and a full negative twist on n strands is
n single negative twists next to each other or (σ−1

1 · · ·σ
−1
n−1)n. We note that a full positive

twist and a full negative twist are inverses of each other, though a single positive twist
and a single negative twist are not inverses.

The T (p,q) torus link can be represented as a q-strand braid with p positive twists. We
can also let p be negative in which case it is a braid on q strands with |p| negative twists.
This corresponds to having the knot wrap around the torus in the opposite direction. The
braid word for the T (p,q) torus link is (σ1 . . .σq−1)p.
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We define the twisted torus link, T ((r1, s1), (r2, s2)), using the definition given by Birman
and Kofman [2], to be the closure of the r2-strand braid

T ((r1, s1), (r2, s2)) = (σ1σ2 . . .σr1−1)s1(σ1σ2 . . .σr2−1)s2

where 2 ≤ r1 ≤ r2. Note that Birman and Kofman impose the condition that s1 and s2 are
positive; we allow these parameters to be negative. We can describe T ((r1, s1), (r2, s2)) as
the closure of the braid consisting of s1 twists on r1 strands followed by s2 twists on r2
strands. Figure 2 shows the twisted torus link T ((3,2), (5,4)) and the general twisted torus
link T ((r1, s1), (r2, s2)) is depicted in Figure 3.

Figure 2. The twisted torus link T (3,2), (5,4))

r1 strands

s1 twists

r2 strands

s2 twists

Figure 3. The twisted torus link T ((r1, s1), (r2, s2))

Much of the recent literature in this area focuses on twisted torus knots. For example
Lee [5] gives a characterization of when a twisted torus knot is unknotted. Morimoto
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shows that there are infinitely many composite twisted torus knots [6]. Dean classifies
primitive/middle-Seifert-fibered twisted torus knots in [3]. However, in general, it is
difficult to determine when a twisted torus link is actually a knot. Each of the above
sources restricts their attention to twisted torus links T ((r1, s1), (r2, s2)) where r2 and s2
are coprime and s1 is a multiple of r1; these are sufficient but not necessary conditions to
guarantee that T ((r1, s1), (r2, s2)) is a knot. This begs the question, “Under what conditions
is a twisted torus link T ((r1, s1), (r2, s2)) a knot?”

The goal of this paper is to characterize relationships between the parameters of a twisted
torus link T ((r1, s1), (r2, s2)) and its number of components. In Section 2, we give neces-
sary and sufficient conditions on r1, r2, s1, and s2 so that T ((r1, s1), (r2, s2)) is a link with
an even number of components (and therefore not a knot). In Section 3, we show that
under certain conditions on r1 and r2 and when s1 = ±s2, we can explicitly determine the
number of components of T ((r1, s1), (r2, s2)). Finally, in Section 4, we discuss conjectures
about the component number of certain families of twisted torus links for which we have
computationally verified tens of thousands of examples.

2. The Parity of the Number of Components

The braid representation of every twisted torus link T ((r1, s1), (r2, s2)) can be associated
with a permutation in Sr2 , the symmetric group on r2 elements. To each of the braid
group generators {σi} ⊆ Br2 , we associate a corresponding transposition in Sr2 . For all i ∈
{1, . . . , r2−1},we associate both σi and σ−1

i to the transposition (i, i+1). Then, each twisted
torus link T ((r1, s1), (r2, s2)) is associated to the product of transpositions as determined
by its braid word (σ1σ2 . . .σr1−1)s1(σ1σ2 . . .σr2−1)s2 ∈ Br2 .

This product of transpositions can be written as a product of disjoint cycles in Sr2 , where
the cycles describe the permutation of strands in the braid. Thus, the number of disjoint
cycles, where we include cycles of length one in the count, corresponds to the number
of components of the twisted torus link. In this section, we determine the parity of the
component number of the twisted torus link T ((r1, s1), (r2, s2)).

Theorem 2.1. A twisted torus link T ((r1, s1), (r2, s2)) has an even number of components if and
only if any of the following hold:

(1) r1 ≡ 1 (mod 2), r2 ≡ 0 (mod 2), s2 ≡ 0 (mod 2)

(2) r1 ≡ 0 (mod 2), r2 ≡ 0 (mod 2), s1 ≡ s2 (mod 2)

(3) r1 ≡ 0 (mod 2), r2 ≡ 1 (mod 2), s1 ≡ 1 (mod 2)

Before starting the proof of Theorem 2.1 we prove a few necessary results about the sym-
metric group. First, recall that any permutation ρ ∈ Sn can be written non-uniquely as
a product of transpositions, and the parity of the number of transpositions is invariant.
Thus, a permutation is called even if it requires an even number of transpositions and odd
otherwise. Also note that any permutation in Sn can be written as a product of disjoint
cycles, where the representation is unique up to the order of the disjoint cycles, which
commute in Sn, and the choice of the first element listed in a cycle. We define the com-
ponent number of a permutation to be the number of disjoint cycles in the permutation,
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where we include cycles of length one in this count. We denote the component number
of ρ ∈ Sn by #ρ.

It is a standard exercise in abstract algebra to show that composing a permutation with a
transposition changes the parity of the permutation. We prove a similar result that shows
that composing a permutation with a transposition changes the parity of the component
number.

Lemma 2.2. Let ρ,τ ∈ Sn, where τ is a transposition. Then, #(ρ ◦ τ) ≡ #ρ+ 1 (mod 2).

Proof. We denote the transposition τ ∈ Sn as τ = (a,b). We consider the permutation ρ ∈ Sn
as a product of disjoint cycles, including cycles of length one, and we note that we have
two cases to consider: either a and b belong to the same cycle or different cycles of ρ.

In the first case, we consider when a,b belong to the same cycle of ρ. We may write
this cycle as (i1, a, i2,b) where i1, i2 stand for arbitrary disjoint blocks of integers in the
cycle. Note that either or both of i1, i2 may be empty. Then, observe that the composition
(i1, a, i2,b) ◦ (a,b) = (a, i1)(b, i2), so #(ρ ◦ τ) = #ρ + 1. This composition breaks the cycle
containing a and b into two disjoint cycles.

In the second case, we assume that a and b belong to distinct cycles of ρ. We write these
cycles as (i1, a) and (i2,b) where i1, i2 stand for arbitrary disjoint blocks of integers that
may also be empty. Then, observe that the composition [(i1, a)(i2,b)]◦ (a,b) = (a, i2,b, i1), so
#(ρ ◦ τ) = #ρ − 1. �

We can generalize this result to determine the parity of the component number of any
two permutations. This will be of use in counting components of twisted torus links.

Lemma 2.3. Let σ,ρ be permutations in Sn. Then,

#(ρ ◦ σ ) ≡
{

#ρ+ 1 (mod 2) if σ is odd
#ρ (mod 2) if σ is even

Proof. In the case that σ is an odd permutation, we know that we can write σ as a product
of an odd number of transpositions, σ = τ1 ◦ τ2 ◦ · · · ◦ τn, where n is odd. By associativity
in Sn, we see that ρ ◦ σ = ρ ◦ τ1 ◦ τ2 ◦ · · · ◦ τn, and from Lemma 2.2, we know that each
transposition changes the parity of #ρ. Since there are an odd number of transpositions,
the final effect is that #(ρ ◦ σ ) ≡ #ρ+ 1 (mod 2).

Similarly, if σ is an even permutation, we know that we can write σ as a product of an
even number of transpositions, σ = τ1 ◦ τ2 ◦ · · · ◦ τm, where m is even. By associativity
in Sn, we see that ρ ◦ σ = ρ ◦ τ1 ◦ τ2 ◦ · · · ◦ τm, and from Lemma 2.2, we know that each
transposition changes the parity of #ρ. Since there are an even number of transpositions,
the final effect is that #(ρ ◦ σ ) ≡ #ρ (mod 2). �

Therefore, the parity of #(ρ ◦ σ ) is determined by the parities of σ and #ρ. In particular,
#(ρ ◦ σ ) is even if and only if one of the following two conditions holds:

(1) σ and #ρ are both odd.

(2) σ and #ρ are both even.
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We will also use the following result in the proof of Theorem 2.1.

Lemma 2.4. Suppose that σ ∈ Sn is a power of an n-cycle. Write σ = (a1, a2, . . . , an)m. Then,
the parity of σ is:

(1) Even if either n is odd or m is even.

(2) Odd if n is even and m is odd.

Proof. A permutation of n objects can be written as (n − 1) transpositions. Taken to the
power of m, we now have m(n−1) transpositions. When n is odd or m is even, we have an
even number of transpositions, so the permutation will be even. When n is even and m is
odd, we have an odd number of transpositions, which means the permutation is odd. �

We now prove our main theorem to determine the parity of the number of components
of T ((r1, s1), (r2, s2)).

Proof of Theorem 2.1:

The number of components of a twisted torus link T ((r1, s1), (r2, s2)) is equal to the com-
ponent number of its associated permutation.

First, we determine the permutation in Sr2 associated to a twisted torus link. Recall that
T ((r1, s1), (r2, s2)) is the closure of the r2-strand braid

B = (σ1σ2 . . .σr1−1)s1(σ1σ2 . . .σr2−1)s2 ,

and is constructed by performing s1 single twists on the first r1 strands followed by s2 sin-
gle twists on all r2 strands. We determine the permutation associated to T ((r1, s1), (r2, s2))
by considering the permutation associated to a single twist. As seen in Figure 4, a single
twist sends the first strand to the rth and lowers the index of each other strand. Thus,
the permutation associated to a single twist on r strands is (r, r −1, . . . ,2,1). Therefore, the
permutation associated to T ((r1, s1), (r2, s2)) is given by ρ ◦ σ , where σ = (r1, r1 − 1, . . . ,1)s1
and ρ = (r2, r2 − 1, . . . ,1)s2 . Since we are looking at whether the number of components is
odd or even, we are interested in #(ρ ◦ σ ) (mod 2).

. . .

1 2 3 4 r

Figure 4. A single twist on r strands.

Consider a twisted torus link T ((r1, s1), (r2, s2)). We make several assumptions about the
parameters r1, s1, r2, s2 that do not reduce the scope of the theorem. The sign of s1 and s2 in
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a twisted torus link does not effect the associated permutation or its component number,
as σi and σ−1

i both map to the same transposition. Therefore we will assume s1 and s2
are positive. We also assume that r1 < r2; if r1 = r2, then T ((r1, s1), (r2, s2)) is the torus
link T (r1, s1 + s2). The number of components of T (p,q) can be easily seen to be gcd(p,q).
Finally, we assume that s1 < r1 and s2 < r2. If si > ri , then the permutation associated to
T ((r1, s1), (r2, s2)) is the same as the permutation associated to T ((r1,d1), (r2,d2)), where di
is the remainder of si (mod ri).

We proceed in cases on the parameters of T ((r1, s1), (r2, s2)).

Lemma 2.5 (Even Cases). A twisted torus link T ((r1, s1), (r2, s2)) has an even number of com-
ponents if any of the following hold:

(1) r1 ≡ 1 (mod 2), r2 ≡ 0 (mod 2), s2 ≡ 0 (mod 2)

(2) r1 ≡ 0 (mod 2), r2 ≡ 0 (mod 2), s1 ≡ s2 (mod 2)

(3) r1 ≡ 0 (mod 2), r2 ≡ 1 (mod 2), s1 ≡ 1 (mod 2)

Proof. We consider each possible case one at a time. In the first case, since r1 is odd, by
Lemma 2.4, the permutation σ is even regardless of the value of s1. Since both r2 and s2
are even, #ρ, which is equal to the gcd(r2, s2), is even. By Lemma 2.3, the twisted torus
link has an even number of components.

In the second case, when s1 and s2 are even, by Lemma 2.4, σ is even since s1 is even,
and #ρ is even because gcd(r2, s2) is even. Once again, by Lemma 2.3 we have an even
number of components. On the other hand, we consider the subcase when s1 and s2 are
odd. Since r1 is even and s1 is odd, by Lemma 2.4, σ is odd; since s2 is odd, gcd(r2, s2) is
odd and therefore #ρ is odd. By Lemma 2.3 there are an even number of components.

In the third case, by Lemma 2.4, σ is odd. Since r2 is odd, gcd(r2, s2) is odd, which implies
that #ρ is odd. By Lemma 2.3 we once again have an even number of components. �

Thus, whenever a twisted torus link follows one of the cases of Theorem 2.1, it will always
have an even number of components. To prove the opposite direction, we will demon-
strate that all forms that do not fall under Theorem 2.1 must have an odd number of
components.

Lemma 2.6 (Odd Cases). A twisted torus link T ((r1, s1), (r2, s2)) has an odd number of com-
ponents if any of the following hold:

(1) r1 ≡ 1 (mod 2), s2 ≡ 1 (mod 2)

(2) r1 ≡ 1 (mod 2), r2 ≡ 1 (mod 2), s2 ≡ 0 (mod 2)

(3) r1 ≡ 0 (mod 2), s1 ≡ 0 (mod 2), s2 ≡ 1 (mod 2)

(4) r1 ≡ 0 (mod 2), s1 ≡ 1 (mod 2), r2 ≡ 0 (mod 2), s2 ≡ 0 (mod 2)

(5) r1 ≡ 0 (mod 2), s1 ≡ 0 (mod 2), r2 ≡ 1 (mod 2), s2 ≡ 0 (mod 2)
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Proof. In the first case, by Lemma 2.4, σ is even because r1 is odd. Since s2 is odd,
gcd(r2, s2) is odd, so #ρ is odd. By Lemma 2.3, the twisted torus link has an odd num-
ber of components.

With Case 2, since r1 is odd, by Lemma 2.4, σ is even. Since r2 is odd, gcd(r2, s2) is odd
and so is #ρ. By Lemma 2.3, we have an odd number of components.

In the third case, by Lemma 2.4, since s1 is even, σ is even. Since s2 is odd, gcd(r2, s2) is
odd, so #ρ is odd. By Lemma 2.3, the twisted torus link has an odd number of compo-
nents.

For Case 4, since r1 is even and s1 is odd, σ is odd by Lemma 2.4. Since r2 and s2 are even,
which causes gcd(r2, s2) to be even, #ρ is even. By Lemma 2.3, we have an odd number of
components.

In the fifth and final case, by Lemma 2.4, since s1 is even, σ is even. Because gcd(r2, s2) is
odd, #ρ is also odd. By Lemma 2.3, we once again have an odd number of components.

�

Therefore, a twisted torus link will have an even number of components if and only if it
follows at least one of the conditions stated in Theorem 2.1.

3. Explicit Determination of the Number of Components

While we have not yet been able to explicitly determine the number of components of a
twisted torus link, we have made some specific progress in this direction.

Theorem 3.1. Consider a twisted torus link of the form T ((r1, s), (r2,±s)) with s ≡ 0 (mod 2).
Then,

(1) If r2 ≡ ±1 (mod s) and r1 ≡ s (mod 2s), the twisted torus link will have 1 component
and is therefore a knot.

(2) If r2 ≡ ±1 (mod s) and r1 ≡ 0 (mod 2s), the twisted torus link will have s + 1 compo-
nents.

Because we are looking at even values of s, and s + 1 and s − 1 influence the number of
components the twisted torus link will have, we run into an interesting corollary that
involves pairs of twin primes.

Corollary 3.2 (Twin Primes). Given a twisted torus link T ((r1, s), (r2,±s)) with s − 1 and s +
1 prime and r2 ≡ ±1 (mod s), the twisted torus link will have one component if r1 . s ∓ 1
(mod 2s). Otherwise, it will have s − 1 components when r1 ≡ s∓ 1 (mod 2s)

Proof of Theorem 3.1:

Proof. To prove part 1 of Theorem 3.1, we note that the assumption that r1 ≡ s (mod 2s)
guarantees that the first part of the twisted torus link will consist of some number of full
twists on the first r1 strands. Therefore, the component number of the twisted torus link
will only depend on the permutation of the s twists on all r2 strands. This number is
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gcd(r2, s). Since r2 ≡ ±1 (mod s), there exists some integer k such that r2 = ks ± 1, and we
see that gcd(r2, s) = gcd(ks ± 1, s) = 1. Thus, the twisted torus link will be a knot.

To prove part 2, we rely on a result from [4], showing that under certain conditions on
r1, s1, r2, s2, the twisted torus link T ((r1, s1), (r2, s2)) decomposes as a split link comprised
of two disjoint torus links.

Proposition 3.3 (Quoted from [4]). Consider the twisted torus link T ((r1, s1), (r2,−s2)) where
r1, s1, r2, s2 ∈ N with r2 ≥ r1 ≥ s1 + s2 and r1 mod (s1 + s2) = 0. Then T ((r1, s1), (r2,−s2)) is
isotopic to T (s2, r1 − r2 − s2

r1
s1+s2

)t T (s1, s1
r1

s1+s2
).

Thus, the component number of the twisted torus link T ((r1, s), (r2,±s) will be the sum of
the component numbers of the torus links T (s, r1 − r2 − s

r1
2s ) and T (s, s r12s ).

The torus link T (s, r1 − r2 − s
r1
2s ) has gcd(s, r1 − r2 − s

r1
2s ) components and the torus link

T (s, s r12s ) has gcd(s, s r12s ) components. From our assumptions on r1 and r2, we know that
there exist integers k1, k2 such that r1 = 2k1s and r2 = k2s ± 1. Therefore, r1 − r2 − s

r1
2x =

2k1s − (k2s ± 1) − sk1 = k1s − k2s ∓ 1. Thus, gcd(s, r1 − r2 − s
r1
2s ) = gcd(s, (k1 − k2)s ∓ 1) = 1,

and gcd(s, s r12s ) = gcd(s, sk1) = s. Therefore, the twisted torus link T ((r1, s), (r2,±s) has s + 1
components. �

4. Conjectures and Further Discussion

We made some progress in generalizing Theorem 3.1, but have not yet developed a formal
proof. However, we wrote a computer program that demonstrated that they hold for tens
of thousands of examples.

Conjecture 4.1. Given a twisted torus link of the form T ((r1, s), (r2,±s)) with s ≡ 0 (mod 2):

(1) If r2 ≡ 1 (mod s) and 1 ≤ r1 (mod 2s) ≤ s, then the twisted torus link will have n =
gcd(r1, s − 1) components.

(2) If r2 ≡ 1 (mod s) and s+1 ≤ r1 (mod 2s) ≤ 2s−1, then the twisted torus link will have
n = gcd(r1 + 2, s+ 1) components.

(3) If r2 ≡ −1 (mod s) and 1 ≤ r1 (mod 2s) ≤ s, then the twisted torus link will have
n = gcd(r1, s+ 1) components.

(4) If r2 ≡ −1 (mod s) and s + 1 ≤ r1 (mod 2s) ≤ 2s − 1, then the twisted torus link will
have n = gcd(r1 − 2, s − 1) components.

Conjecture 4.2. Given a twisted torus link of the form T ((r1, s), (r2,±s)) with s ≡ 0 (mod 2),
the following statements are true:

(1) If r1 ≡ 1, s,2s − 1 (mod 2s) and r2 ≡ 0 (mod s), then the twisted torus link will have s
components.

Conjecture 4.3. Given a twisted torus link of the form T ((r1, s), (r2,±s)) with s ≡ 1 (mod 2),
the following statements are true:

(1) If r1 ≡ 0 (mod 2s) and r2 . 0 (mod s), then the twisted torus link will have s + 1
components.
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(2) If r1 ≡ 2,2s−2 (mod 2s) and r2 ≡ 0 (mod s), then the twisted torus link will have s−1
components.

(3) If s is a prime, r1 ≡ 1, s,2s−1 (mod 2s) and r2 . 0 (mod s), then the twisted torus link
will have 1 component.

The approach we take in proving Theorem 2.1 is algebraic, using the permutation associ-
ated to a twisted torus link. This algebraic approach is useful in determining component
number, as the positioning of the strands in a braid determine its component number.
However, a further direction that may be promising is to use a geometric approach. In
order to work toward a full classification of twisted torus links, we will need insight not
only to the number of components, but also to how the components interact within the
link. There are many linking invariants that could prove useful in this direction. In con-
sidering the geometry of a twisted torus link, we made some progress in tracking specific
strands of the braid throughout the diagram. While there is some tricky number theory at
play, adjacent strands in the braid travel in “chunks,” with the size of the chunks depend-
ing on the parameters of the twisted torus link. We looked to define a mapping formula
for the jth strand of T ((r1, s1), (r2, s2)) that will depend on the value of j in relation to s1, r1,
and r2.

Using this approach, we were able to see some characteristics that hold true for any
T ((r1, s1), (r2, s2)). Figure 5 shows the exact formulas for the mapping of any strand j
in the braid representation of a twisted torus link.

s1 r1 − s1 r2 − r1
1 s1 s1 + 1 r1 r1 + 1 r2

s1 twists

s2 twists

1 + r1 − s1 − s2
r1 − s2

1− s2
r1 − s1 − s2

r1 + 1− s2 r2 − s2

j + r1 − s1 − s2 j − s1 − s2 j − s2
Figure 5. Any twisted torus link T ((r1, s1), (r2, s2)) will have this mapping.
There are three different formulas for mapping strand j, depending on
where j lies in relation to s1, r1, and r2. All formulas represent equivalence
classes (mod r2).

From this figure, we see where any given strand j in the braid representation maps de-
pending on where it lies in relation to s1, r1, and r2. Note these formulas show that any
given “chunk” of strands with the same mapping formula will map to sequential equiv-
alence classes (mod r2) and that all the strands in each chunk will go to each class in
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order, starting with the first chunk then the third chunk and ending with the last chunk.
A couple special scenarios follow immediately from Figure 5. When s1 + s2 = r1, the
twisted torus link will have s1 + gcd(r2 − s1, s2) components, since the first s1 strands will
map back to themselves and the rest will follow the pattern of a torus link. Further, when
s1 + s2 = r2, the twisted torus link will have r1 − s1 + gcd(r2 − r1 + s1, s1 (mod r2 − r1 + s1))
components, since the strands between s1 and r1 +1 will map back to themselves, and the
rest of the strands will behave as a torus link.
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