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1 Introduction

Obstructive sleep apnea (OSA), a form of sleep-disordered breathing characterized
by recurrent episodes of partial or complete airway obstruction during sleep, is a
serious health problem, affecting an estimated 1–5% of elementary school-aged
children [5, 13]. Even mild forms of untreated pediatric OSA may cause high
blood pressure, behavioral challenges, or impeded growth. Compared to adults, the
symptoms of childhood-onset OSA are more varied and change continuously with
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development, making diagnosis a difficult challenge. The complexity of the data
from surveys, biomedical measurements, 3D facial photos, and time-series data calls
for state of the art techniques from mathematics and data science.

Clinical data, including that considered in confirming or ruling out a diagnosis
of pediatric OSA, consist of high-dimensional multi-mode data with mixtures of
variables of disparate types (e.g., ordinal and nominal categorical data of different
scales, interval data, time-to-event and longitudinal outcomes) also called mixed or
non-commensurate data. These data obtained from multiple sources are common-
place in modern statistical applications in medicine and health, with thousands, even
millions, of features recorded simultaneously from each object or individual.

In this paper, we analyze symptom data provided by patients and clinicians,
while in related work, we analyze polysomnography signals (physiological time
series data). These two papers are case studies in a larger project of building
an algorithm to aid clinicians in their treatment decisions for pediatric OSA
patients. To overcome the difficulties in analyzing high-dimensional multi-mode
data from multiple sources, we propose adopting a hybrid approach that interactively
combines statistics, computational topology and deep learning to take advantage of
their strengths and mitigate their weaknesses. Statistics provides a suite of tools for
model specification and identification, including model estimation and inference,
which oftentimes entail a high computational cost. Computational topology via
persistent homology aims to detect ‘true’ signals in high-dimensional data with
respect to a varying model parameter [7, 41], which contrasts with the conventional
statistical approach of estimating one or more model parameters that, at best,
yield signals; however, the lack of a coherent approach to statistical inference in
topological data analysis is a serious drawback. Deep learning, on the one hand, has
been successfully used in speech recognition [15] and owes part of its practical
appeal to its computational efficiency; on the other hand, it can be difficult to
intuitively justify why deep neural networks work. Integrative ensemble methods
would thus ideally blend statistical theory, topology and deep learning in a seamless
fashion, all three working in concert, as in a musical ensemble, fully exploiting the
amount of available information across multiple sources.

Here we illustrate the first step toward to building a hybrid approach by compar-
ing several methods in statistics, computational topology, and machine learning. In
Sect. 2, we describe data collected from pediatric OSA study Pro00057638, at the
University of Alberta. Survey and craniofacial data are easier and cheaper to collect
than polysomnography (PSG) data, so for maximum clinical impact we focus this
article on analyses of those data sets. For the analyses of PSG time series data, we
refer the reader to [32].

The rest of the paper is organized as follows: in Sect. 2, we introduce two sets
data—survey questionnaires and craniofacial scores. In Sect. 3, we outline initial
findings of our data exploration which provides a basis for the methods we applied
to our data, described in Sect. 4. In Sect. 5, we compare methods in statistics and
machine learning for classifying OSA patients using survey data and craniofacial
data and discuss results. Lastly, we complete our article with conclusion and future
research steps in Sect. 6.
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2 Pediatric Obstructive Sleep Apnea and Data

As in adults, OSA in children is associated with cardiovascular dysfunction,
neurocognitive dysfunction, behavioral issues, and metabolic consequences. OSA
is also believed to negatively influence school performance and learning potential in
children. The gold standard for diagnosis of pediatric OSA is PSG [19]. However,
in many countries, access to PSG is severely limited and many children do not have
an appropriate diagnosis before treatment. Consequently, children with OSA may
not be treated or some children without OSA may undergo unnecessary surgery. A
simple and accessible way to identify children with OSA is needed. Finding insights
within inexpensive data is a crucial first step.

In our study, patients at risk of OSA underwent PSG, filled out questionnaires,
and had 3D photos taken, which were assessed by orthodontists for craniofacial
index. Normative patients (considered not at risk of OSA) did not undergo PSG,
but filled out questionnaires and were assessed by orthodontists in the same way as
patients at risk of OSA. Our analysis of PSG data can be found in [32].

Broadly speaking, data types can be distinguished as structured and unstructured.
Examples of the former include metabolite concentrations, medical records, and
survey questionnaires, while more complex high-dimensional data such as digital
images (e.g., photos, CT scans, MRI), text, time series, audio, and DNA sequences
are examples of the latter. Methodologies for analysis differ based on whether data
are structured or unstructured. In following sections we demonstrate methods in
statistics, computational topology and deep learning to classify or cluster OSA
patients using survey questionnaires and craniofacial data (both structured). Our
current research aims to build a foundation which will be useful for combining
analytic methods for both structured and unstructured data in predicting severity
of OSA.

2.1 Survey Data

Once a clinician suspects that OSA may cause troublesome symptoms in a child,
OSA-specific surveys can be administered to the affected parents and child. The
questionnaires analyzed here encompass the Child’s Sleep Habits questionnaire, the
OSA-18 Quality of Life survey, a Health Screening Questionnaire, the Pediatric
Sleep Questionnaire, and the PedsQL Pediatric Quality of Life Inventories for child
and parent.

In the case of pediatric surveys, many children are not old enough to read or
respond to such a survey, leaving parents to report observations about symptoms as
best as they can. Missing data may result from survey-takers not knowing an answer
to a question or feeling uncomfortable answering a question truthfully. However,
even with their shortcomings, surveys are far easier and less costly to obtain and
analyze than a PSG exam. Usually, PSG exams are not covered by insurance,
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resulting in out-of-pocket costs; they require a separate appointment and overnight
evaluation; and the results can take anywhere between 6 months and 2 years to
come back. Conversely, surveys can be completed at the clinic during a visit, are of
no additional costs to patients or their families, and can be evaluated immediately.

In addition to the “subjective” patient—and parent—provided data about symp-
toms and quality of life, we include dentist-gathered data about craniofacial
characteristics (CF data) of children where noted below.

2.2 Craniofacial Data

Of particular interest to clinicians is craniofacial data [16], which is a series of
measurements taken to capture the shape of the face and mouth. There are two
reasons for a potential preference for craniofacial data instead of survey or PSG data.
First, craniofacial data is inexpensive and takes minutes to measure, and therefore
takes up far fewer resources than those needed for a PSG. The accessibility of
this data is demonstrated in our data set, which is complete for all craniofacial
measurements, eliminating the need for imputation of data. Second, craniofacial
data consists of quantitative measurements, which may reduce bias that may arise
in responses to qualitative survey questions.

There are nine craniofacial measurements we consider in our analysis. Figure 1
depicts the first eight features, while the ninth, the Craniofacial Index, is a sum of
these first eight measurements. The measurements are defined as follows [1]:

1. Profile is a measurement for the angle of the shape made by the line from the
brow to the base of the nose and a line from the base of the nose to the chin when
viewing the patient from the side.

2. Midface Deficiency quantifies the projection of the malar area below the eyes
(the bones which form the eye socket and cheekbones) relative to the rest of the
face.

3. Lower Face Height is the proportion of the length from the brow to the base of
the nose to the length from the base of the nose to the bottom of the chin.

4. Lip Strain scores the amount of effort a patient uses to close their lips, measured
by observing the muscle contractions from the front view.

5. Palate scores the depth of the palate (the roof of the mouth) and the arch of the
palate.

6. Overjet is the horizontal distance between the upper incisors and the lower
incisors when the patient bites down. Any measurement above 5 mm is consid-
ered severe.

7. Overbite is the length of vertical overlap between the upper and lower incisors.
8. Posterior Bite is the transverse relationship between the molars and premolars,

assessed by observing the relationship between upper posterior teeth and lower
posterior teeth on both sides of the mouth.

9. Craniofacial Index is the summation of the previous eight scores and gives a
summary statistic of the craniofacial data.
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Fig. 1 Table illustrating eight of the measurements taken for craniofacial data. The image is taken
from [1]. A green circle receives a numerical score of 0, a blue square receives a numerical score
of 1, and a red triangle receives a numerical score of 2. The ninth score, the Craniofacial Index, is
the sum of these eight measurements
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Measurements 1–8 are scored on a scale from 0 to 2, where 0 indicates a
normal measurement and 2 indicates a severely abnormal measurement. As a
result, the Craniofacial Index can range from 0 to 16. To analyze the craniofacial
data, we first looked at the overall distributions of the complete data set (187
subjects, with 76 controls and 111 patients), visualized as histograms (see Figs. 2
and 3) to spot any glaring differences between control and patient groups in
distributions and calculated the Earth Mover’s Distance between distributions for
each craniofacial characteristic to quantify those differences (see Table 9). The
craniofacial characteristics with the most differences were identified. We then
conducted our analysis as described in Sects. 3 and 5.

2.3 Cleaning Data

As with many data sets, ours came with missing values. Before starting our analysis,
we cleaned our data set by leaving out samples with too much missing data,
imputing missing values where appropriate, and dropping certain variables which
also had too much missing information. Our data consists of survey responses and
craniofacial data from 200 subjects from two different clinics, with 172 observed
variables. After removing subjects who did not have an OSA classification listed,
we had 187 subjects remaining. At the early stage of recruiting normative children,
some subjects did not fill out questionnaires due to a miscommunication between
the principal investigator and research collaborators. Other subjects were too young
to be able to fill out any child surveys and thus had too much missing data. As a
result, we removed any subjects with more than 50% of the variables missing. This
brought our total subjects down to 173 (67 controls, 106 patients). We excluded
text responses from our analysis, such as lists of medications or descriptions of
pain. Yes-no questions were encoded in binary. Bed time and waking time were
not considered in this analysis, and we encoded variable “total sleep time” in one
numeric column. Finally, we removed gender, height, weight, and body mass index
(BMI) due to the number of missing values. After these steps, we were left with 157
input variables.

Many of the questions in the surveys were on a Likert scale. For example, patients
were asked to rank on a scale of 1–7 how much they agree with certain statements
such as “I have a hard time getting out of bed”, or “I feel sleepy during the day”. We
standardized encoding so that higher numbers indicate the presence OSA symptoms
and low numbers the absence of OSA symptoms. For the K-Mapper algorithm and
singular value decomposition (see Sects. 3.2 and 3.3 respectively), we scaled all

data to be in the range of [0, 1], using x−min(x)

max(x)−min(x)
. We did not scale the data for

other techniques, as they are all scale invariant.
Imputation was carried out separately for methods that used the numerical

encoding for categorical variables versus those that used the categorical variables
directly. For the former, we imputed missing values using the MissForest command
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Fig. 2 Distributions of different craniofacial measures for the control and the patient groups.
Graphs are scaled for the overall frequency in the data sets. We include the Earth Mover’s Distance
(EMD) in the title of each feature’s graph to quantify the difference between distributions to
compare among craniofacial features. As shown, the distributions which are most different are
Lower Face Height and Palate Score. The full frequency numbers and Earth mover’s distances can
be found in Table 9 in the appendix
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Fig. 3 Distribution of Craniofacial Index for the control (right, orange) and patient groups (left,
blue). The graph was rescaled for frequency with respect to the size of their data sets. The Earth
Mover’s Distance between these two distributions is 0.0415

from the MissingPy package for Python [29]; these numbers were rounded to the
nearest integer to be consistent with the raw data. For the latter, more specifically
for Bayesian methods, we used the MICE package with Predictive Mean Matching
in R for its capability of imputing categorical data without encoding. Note that
any discretization of continuous variables for these methods was carried out after
imputation.

We split the data such that 70% was contained in the training set and 30% was
in the test set. To demonstrate stability, we applied each learning algorithm to 10
different training/test splits with the same 70/30 ratio, where each training and test
split had the same control to patient ratio as the whole dataset. We used the same
training and test data sets for each supervised learning algorithm unless otherwise
stated. For each split, the optimal parameters were found for each training set before
evaluating the algorithm on the test data. Specific validation techniques for each
algorithm are discussed in Sect. 4. The algorithms were run on three subsets of
data: survey questions only, craniofacial measurements only, and both survey and
craniofacial data combined.

3 Data Exploration

In this section we present super-level sets of correlation networks [14] and
visualizations from the Mapper algorithm from topological data analysis [34],
which we compare to visualizations from singular value decomposition [31]. These



A Survey of Techniques for OSA Data 299

explorations of the data illustrate the heterogeneity of symptoms experienced by
children and shed light on the limitations of the classification algorithms explored
later in Sect. 4.

As an initial exploration of the data, we plotted super-level sets of correlation
networks for questionnaire responses and craniofacial scores of the patient and
control groups. Networks allow visualization of the relationships between input
variables and comparison of those relationships across datasets. Correlation network
analyses have been successfully applied in computational biology [3], neuroscience
[39], and finance [20]. For this particular method, we exclude the children’s
Pediatric Quality of Life survey, as those values likely correlate strongly to the
answers of the parents’ Quality of Life survey.

3.1 Correlation Networks

We plot one network representing the patient data and one network representing
the control data. Each node or vertex in a network is a symptom/survey response
item. For each pair of survey questions i and j , we calculate the Pearson correlation
between questionnaire responses across all respondents. If the correlation between
survey responses i and j is greater than some threshold h, then we place an edge
between i and j . If we consider h ∈ [−1, 1], the networks obtained by varying h

form a filtration of the simplicial complex given by the complete graph on all nodes.
The topology of these super-level sets gives information about what symptoms are
more co-incident in both pediatric OSA and control patients. In Fig. 4a, the threshold
is h = 0.6, while in Fig. 4b, the threshold is h = 0.7. These values were chosen
to illustrate the steps of the filtration. No two variables had a correlation above
0.8, which we attribute to the size of the data set and the variability of symptom
expression in OSA patients. To make the plots easier to examine, we only plot nodes
with a degree of one or more, so any variables not shown can be assumed not to meet
the correlation threshold with any other variable.

In the network graphs with threshold h = 0.6, there are some symptom
correlations which seem obvious. For example, a patient having seen an orthodontist
correlates highly with a patient having received an orthodontic treatment, as one is a
prerequisite for the other. However, in Fig. 4a, we see that although the patient and
control graphs seem to have the same number of nodes (both have 49 nodes in the
figure, the rest are isolated), the control group has fewer connected components (11,
vs 15 in the patient group, not including isolated nodes). The control group network
also has more edges and cliques (53 edges, 12 cliques) compared to the patient
group network (38 edges, 6 cliques). We observe that in this first set of graphs, the
control group has higher connectivity than the patient group.

This connectivity difference is still present though not as blatant in the second
set of graphs in Fig. 4b, where the connectivity once again appears stronger in the
control group than in the patient group. The control group’s network has 29 nodes,
21 edges, and 10 connected components (not including isolated nodes), while the
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Fig. 4 Correlation networks derived from the raw data. If two variables had a correlation higher
than 0.6 (in (a) top) or 0.7 (in (b) bottom), then an edge was drawn between variables. Isolated
points were not plotted. The Quality of Life (QL) Survey answered by children was not included
so as to have clearer graphs, as children’s answers were likely to be highly correlated with their
parent’s or guardian’s answers to the same survey

patient group’s network has 21 nodes, 14 edges, and 8 connected components. The
presence of more edges and more nodes within connected components of the control
group’s network indicates that some subsets of variables in the control group may
have high correlations than the same subsets of variables in the patient group. We
compare this information with the visualization of patient classification in Sect. 3.3
on singular value decomposition. Knowing this distribution information is important
because it is not only important for clinicians to predict when a child has OSA but
also to spot when they do not. In particular, we notice that five of the craniofacial
variables are in a connected component in the control group, whereas all craniofacial
variables are isolated nodes in the patient group. This may indicate that craniofacial
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variables may be useful in finding controls, but not as much valuable for diagnosing
OSA. Given the value of craniofacial measures as discussed in Sect. 2.2, we note
that the subset of craniofacial measures and their relationship to OSA diagnoses is
worth exploring separately from the survey data.

3.2 Mapper Algorithm

The Mapper algorithm from topological data analysis ([28], implemented as [34]) is
a tool for abstracting high dimensional data so that one can recover the underlying
topological structure (the topological nerve of the data). We here refer to the
algorithm as the K-mapper algorithm to indicate both the method and the imple-
mentation in Python. K-mapper reveals the shape of data via a simplicial complex
representation. Given the high dimensionality of the data and the suite of topological
and geometric classification methods available, applying the K-Mapper algorithm to
our data may indicate whether such geometric and topological methods are worth
implementing, or whether we might gain information from those techniques that we
would not gain from traditional statistical tools. This methodology has gained some
traction elsewhere in exploring medical data [17, 25].

We briefly describe the Mapper algorithm. First, a filter function is used to define
a covering of the data point cloud D ⊂ R

n, where n is the number of variables
under consideration. We used the sum filter function f : Rn → R, �x �→ ∑n

i=1 xi ,
i.e. f is used to pull back an open cover {Ui}5

i=1 of the image f (D) ⊂ R given by
five equally-sized intervals Ui ⊂ R, i = 1, . . . , 5. After this step, an unsupervised
clustering method selected by the analyst is used to cluster data points within the
open sets f −1(Ui), and these clusters become nodes of the graph. We used k-means
clustering with k = 3. Since each data point can appear in multiple clusters/nodes
of the Mapper network, the last step draws an edge between two nodes if there is
more than 60% overlap (this overlap parameter is again set by the analyst).

Topologically, there is not much of a difference between the structure of the
simplicial complexes given by combined data (Fig. 5a, b), the survey data (Fig. 5c,
d), and the craniofacial data (Fig. 5e, f). While both the combined data simplicial
complex and the survey data simplicial complex have two components, the second
component is one node made up of exactly one sample. The combined data has more
edges (36) than the survey data (33), which has more edges than the craniofacial data
(28), but this may very well be a result of the differing number of variables being
considered by the algorithm. (Recall there are 157 input variables, 8 of which are
craniofacial variables and 149 of which are survey variables.)

However, it appears that the craniofacial data does not have a single cluster with
less than 40% OSA patients, as shown in the coloring of the graphs and in the
node distributions, whereas both the survey data and the combined data are able
to recover nodes where there are around 30% OSA patients (the node with the
smallest percentage of OSA patients in the combined data has 30.8% OSA patients,
while the node with the smallest percentage of OSA patients in the survey data has
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Fig. 5 (continued)
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29.6% OSA patients). This indicates that the craniofacial data by itself is unable to
clearly distinguish controls from the collective set of patients and controls, while
the presence of survey data grants this distinction among nodes.

That said, the craniofacial data by itself was able to discover slightly more pure
nodes which were 100% OSA, and the samples which fell in these nodes had very
little overlap with the 100% OSA nodes from the survey data, and those of the
combined data. In the survey data, there were 4 nodes which were 100% OSA and
together were made up of 8 samples. In the combined data, there were 4 pure OSA
nodes, which in total were made up of 9 samples, 8 of which were the same as the
those in the pure OSA nodes identified using the survey data. In the craniofacial
data, there were 3 nodes made up of total 14 OSA samples, only 3 of which were
overlapped with those OSA samples identified by the survey data, and also by the
combined data. Thus, the craniofacial data were able to clearly distinguish 11 OSA
samples that were mixed in with controls in the other two simplicial complexes. On
its own, craniofacial data offers a different angle of consideration for finding those
most likely to have an OSA diagnosis. The K-Mapper analysis justifies the need to
run algorithms not just on the combined data but on the craniofacial data and the
survey data separately, as they seem to give different insights: the craniofacial data
is best at finding who most likely has OSA, while the survey data is better at finding
who does not have OSA.

3.3 Singular Value Decomposition

Singular value decomposition (SVD) is a commonly used matrix factorization
method that decomposes a matrix A into a product of three matrices: A = USV T ,
where U , V are unitary matrices, while S is a rectangular diagonal matrix [31].
SVD can be used as a dimension reduction technique through selecting directions
of high variance via the left and right singular vectors that make up matrices U

and V . This method is related to the well-known Principal Component Analysis
(PCA). While PCA is a factorization of the covariance or correlation matrix, the

�
Fig. 5 Simplicial complexes derived using the K-Mapper algorithm and their respective graph
node distributions by color code. Top row: (a) the simplicial complex for combined questionnaire
and craniofacial data and (b) the graph node distribution of the simplex, which shows that 8 nodes
have over 90% OSA patients, and the smallest percentage of OSA patients are two nodes in the
30–40% bin. Second row: (c) the simplicial complex for questionnaire data and (d) the graph node
distribution of the simplex. Note the simplex and the distribution are very similar to that for the
combined data, but the survey data was able to get one node to be under 30% OSA. Third Row:
(e) the simplicial complex for craniofacial data and (f) the corresponding node distribution. The
craniofacial data was not able to parse out the controls as well as the questionnaire data, as seen
with having only one node below 50% OSA. However, the craniofacial data itself found 11 OSA
patients and put them in clusters of 100% OSA that the survey and combined data were not able to
in their own clustering
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Fig. 6 Projections to the first two components of the symptom space (top), and projections to the
first two components of the respondent space (bottom) as given by singular value decomposition
(SVD). The figures underscore the difficult challenge of categorizing patients and prioritizing
symptoms. In the top image, the texts are the survey variables. In the bottom graph, the stars
denote controls, while the dots are OSA patients

SVD offers a full matrix factorization of the original data matrix. Applied to the
matrix of respondents and responses, the SVD can suggest the survey questions that
are significant in confirming or discarding a diagnosis of OSA. It also suggests ways
in which presentation may be divergent among distinct groups of children. Here we
examine survey data only, discarding the craniofacial data for the moment. The SVD
was applied to the scaled survey data. Here we used the svd function included in the
base package of R.

Visualization of the projection to the first two singular components demonstrates
the range of symptoms experienced by participants and illuminates the difficulty
that we will see in using supervised learning methods like decision trees and
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support vector machines to create accurate classifiers. The projections to the
first two singular components in symptom space (or variable space), that is, the
first two columns of U are in the top image of Fig. 6, with the grayness of
the point proportional to the magnitude of average difference between control
and symptomatic patients. Meanwhile the bottom graph of Fig. 6 displays the
projections to the respondent space i.e. the first to columns of V , with respondents
“no OSA” (stars) and “OSA” (dots). As demonstrated in this projection, control
patients and symptomatic patients are not cleanly separable, and symptomatic
patients are notable for their heterogeneity. This observation foreshadows the poor
results we will see from classification algorithms.

The projection to the first two singular components in symptom space shows
that just a few questions exhibit the largest variance in responses: waking up feeling
unrefreshed in the morning, waking up with an alarm, and having a child who is
on-the-go at all times are high-variance symptoms, with a high difference between
control and symptomatic patients. The surprise is that these symptoms do not
cleanly differentiate between children with and without OSA. This highlights that
pediatric OSA is a complex diagnosis that cannot be easily reduced to appearance
of a subset of symptoms.

It is worth comparing the visualizations from singular value decomposition with
those coming from kernel PCA, shown in Fig. 9.

4 Statistical Learning Methods

Because of the high dimensionality of our data and the findings in our data
exploration, we apply a variety of machine learning techniques. In this section, we
discuss each of the methods used and the justification for applying them to our
data sets. The performance results of those classification methods are in Sect. 5.
We aim to classify recruited patients into two categories: No OSA and risk of
OSA. In clinical practice, there are four categories for OSA—no OSA, mild OSA,
moderate OSA, and severe OSA—but to establish initial diagnostic results, we start
with presence or absence of OSA. Further discussion about classification of severity,
using all four categories, is in Sect. 6.

4.1 Non-Bayesian Supervised Learning

We applied various supervised methods to see how accurately one can infer
whether a subject has OSA or does not have OSA. These methods include Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic
Regression (LR), Decision Trees (DT), Random Forests (RF), Neural Networks
(NNET), and Support Vector Machines (SVM) and K-nearest Neighbour (KNN).
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These techniques are well-established and we provide only a cursory overview of
results so that contrast with other methods can be established.

Linear Discriminant Analysis (LDA), proposed by Fisher in 1936, is one of the
most basic classification methods. The method uses a linear decision boundary, and
assumes that the conditional probability density function on each class is Gaussian
with a shared covariance matrix for the feature data. In comparison, Quadratic
Discriminant Analysis (QDA) assumes different covariance matrices for different
classes, creating quadratic decision boundaries between classes. Although LDA may
seem too simple to handle complex high dimensional data, we use it as a benchmark
method as it may provide insight on how much improvement more advanced
statistical/machine learning methods can achieve. Logistic regression (LR) is also a
very popular method, especially for binary classification and models the probability
of classes using a logistic function . We used the R packages mass [36] and glmnet
[10] for our calculations.

Decision tree (DT) is a non-parametric method which classifies based on how
strongly each individual feature performs in predicting ultimate diagnosis. A major
benefit of DT is its interpretability, as it allows the user to see which variables
are most significant in the classification. The DecisionTreeClassifier from the
Scikit-learn library for Python was used [24]. A grid search to find the optimal cost-
complexity pruning parameter was performed, using the model selection library
from Scikit-learn. The optimized parameters for DT and other machine learning
methods can be found in Table 1. In addition to DT, we used random forests (RF)
to select important variables. Random forests consist of an ensemble of decision
trees. Each step growing the component decision trees randomly selects a user
specified number of variables from the whole set of variables. The purpose of this
randomization is to grow many trees, which are not similar to each other, allowing
the algorithm to explore the explanatory variable space as widely as possible, often
giving a more robust outcome than decision trees. In this paper, we used the default
choice for the number of variables selected at each step, i.e.,

√
P , where P is the

number of variables. We used the R package randomForest for these calculations
[18].

Neural Networks (NNET) are the basic component of modern deep learning
methods. The model creates a graph consisting of multiple “hidden” layers, each
of which consists of a specified number of nodes or hidden units. The initial layer
consists of the input variables while the final layer models the outcome. Values
of nodes in each hidden layer are obtained by taking a linear combination of
the features in the previous layer and applying a non-linear activation function
(usually the logit function). Using a non-linear activation builds complexity and
allows flexible modeling. NNET finds the ideal weights in the linear combinations
by iterating between forward and backward propagation to minimize the desired
loss function using gradient descent. While deep learning, entailing a large number
of hidden layers and/or units has gained popularity, literature applying it to OSA
detection has been limited to adult OSA and does not generally deal with survey or
craniofacial data. For example, see [2, 6] for apnea severity classification using ECG
data, [12] for OSA detection using facial images, and [21] for a literature review. In



A Survey of Techniques for OSA Data 307

Table 1 Optimal parameters for supervised learning methods for the first train/test split. For the
Decision Trees (DT), α is the cost-complexity pruning parameter. For Random Forests (RF), the

√
p

is the square root of the total number of random variables being considered. For Neural Networks
(NNET), “size” refers to the number of hidden units and “decay” is the learning rate. The parameters
were chosen using the 10-fold Cross Validation of the training data. For Support Vector Machines
(SVM), we have three parameters: the type of kernel, the penalty parameter C, and the scaling
parameter γ . Finally, for k-Nearest Neighbors (k-NN), k is the number of data points within the
closest proximity of each data point that they are connected to in order to form clusters

Example optimal parameters for first train/test split for each data set

Method CF data Survey data Combined data

DT α = 0.01 α = 0.04 α = 0.04

RF
√

p ≈ 3
√

p ≈ 12
√

p ≈ 13

NNET Size = 2 Size = 2 Size = 2

Decay = 1.0e − 2 Decay = 1.0e − 2 Decay = 1.0e − 2

SVM Kernel—exp. Kernel—linear Kernel—exp.

C = 1 C = 0.001 C = 1

γ = 1 γ = 0.01

k-NN k = 9 k = 6 k = 5

contrast, due to the size of our survey data, we only applied shallow neural networks
with one hidden layer. This left the following parameters to be tuned: (1) the number
of hidden units per layer (size = 2, 3, 4, 5, 6, 7), (2) the random seeds for initial
values (2000, 2001, 2002, 2003, 2004, 2005) and the (3) learning rate (i.e., decay
= e−2, e−1, 1). The R package nnet was used in our implementation [37]. 10-fold
Cross-validation on each of the training data sets was used to select the optimal
combined set of tuning parameters, and then the corresponding test data set was
used to obtain the performance measurements.

In Support Vector Machines (SVM), a decision boundary is chosen by solving
a convex optimization problem. In particular, the method finds a separating hyper-
plane maximizing the margin between two classes. The key strength of SVM is
allowing the replacement of the Euclidean inner product in the objective function
with an arbitrary kernel function, thereby enabling versatile non-linear decision
boundaries. Tunable parameters for this algorithm include the penalty parameter
C for an L2-regularization term, and a scaling parameter γ which determines
the proximity of training vectors that will influence the classification of a new
point (higher values indicate closer points are used). We optimized these values
for linear and exponential kernels (where kernel type was also a variable) using a
cross validation grid search. SVM has given promising results in some diagnostic
contexts, for instance in diagnosing Lyme disease [8].

Last, we used k-nearest neighbors classification (KNN), which simply put, uses
the votes of the k nearest neighbours of a test point to determine its class. We used
uniform weights for each feature as we did not wish to introduce feature importance
in a benchmark measure. We used a cross validation grid search to find the optimal k

over values {2, 3, . . . , 9}. The scikit-learn KNeighborsClassifier toolbox for nearest
neighbors was used in these calculations [24].
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4.2 Bayesian Classifiers

Bayesian networks are directed acyclic graph models that represent the joint
distribution of a set of random variables. In these models, random variables are
represented as nodes and dependencies between them are represented by directed
edges. Advantages of Bayesian networks include: their suitability for small and
incomplete data sets, their ability to combine known knowledge/priors with data
(allowing incorporation of expert knowledge), and avoiding a parametric approach
that makes strong assumptions on the data structure (see more details in [30] and
[33]). The main disadvantage of these networks, however, is the computational
complexity in constructing network structure from data.

Bayesian classifiers are a particular application of Bayesian networks—they
estimate the probability of each class given the predictor variables. We apply
two basic classifiers, Gaussian Naïve Bayes (GNB) classifier and Tree augmented
Bayesian (TAN) classifier, and a more recent approach, Semi-Hierarchical Bayesian
(SHNB), described in [22]. GNB assumes that all the attributes are independent
given the class variable, and further that the conditional distribution of the continu-
ous features is Gaussian for each class. This classifier can be efficient due to the low
number of required parameters and the low computational cost for inference and
learning. However, in many applications to real life data, conditional independence
may not be valid. To help this, TAN constructs a directed tree among the attributes to
incorporate dependencies between them, allowing each attribute to depend on other
attributes as well as the class variable.

As the number of attributes increases, the number of possible structures goes
up, requiring a large dataset to obtain good estimates. To overcome this, the
authors in [40] introduced the Hierarchical Naive Bayesian (HNB) classier, a
variation of which is SHNB [22]. SHNB extracts latent (“hidden”) variables from
highly dependent observed variables and uses these to replace the original, thereby
reducing the number of attributes. The analysis is conducted in two steps: (1)
creating latent variables using NB, (2) using TAN with the latent variables and
the remaining attributes (we remark here that latent variables were created by dis-
cretizing continuous variables and applying Naive Bayes, not GNB, as the extension
of GNB to TAN or SHNB is not straightforward). To create latent variables, we
calculated the conditional mutual information (CMI), a similarity metric, between
each pair of variables given the class. We then obtained an undirected graph
connecting all the attributes based on the CMI between each pair of variables.
Lastly, we created latent variables from the variables that form maximal cliques.
For example, among 8 craniofacial features, two maximal cliques were chosen
with the threshold similarity measure: the first being overjet and overbite, and the
second being midface deficiency and lower face height. We created latent variables
from each pair, calling them anterior teeth coupling and maxillomandibular facial
proportion, respectively. The original four attributes consisted of three levels each,
displayed in Table 2. We combined the levels “deep bite” and “open bite” for
the variable overbite and called it abnormal (similarly the abnormal category was
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Table 2 (Left) Original nine categories (cardinalities) of combined OB and OJ. (Right) A latent
variable, anterior teeth coupling (ATC) with four categories

OB\OJ Increased Normal Reverse

Deep bite 15 27 0

Normal 15 96 8

Open bite 3 2 7

ATC Normal Abnormal

Normal 96 23

Abnormal 29 25

used for both “increase” and “reverse” levels for overjet). The latent variables thus
obtained from each pair consists of four categories: Abnormal-Normal, Normal-
Normal, Normal-Abnormal, and Abnormal-Abnormal. The SHNB structure was
then obtained using the TAN classifier with these latent variables and the four
remaining craniofacial attributes that were not a part of any maximal clique.

We similarly modeled GNB, TAN and SHNB for two additional datasets: all
survey questionnaires (total of 149 variables), and both survey and craniofacial
index data (total of 157 variables). The six continuous variables in the survey
questionnaires were discretized into two groups and cut off at values: age (8 years
old), # of hours of sleep (9 h), how long waking lasts at night (12 min), # of days
(last week) participating in physical activity (5 days), quality of life rating called
OSA-overall (7 out of 10) and the total number of “yes” responses to OSA-related
symptoms (8 out of 22). For both of the aforementioned datasets, the undirected
graphs based on CMI between variables showed 3 clusters formed by the variables
in each of the following questionnaires: Pediatric Quality of Life Inventory (PedsQ,
23 variables), PedsQL by children (23 variables) and OSA-18 (19 variables). Each
questionnaire recorded responses on an ordinal scale, with a fixed number of
response levels shared by all questions in the questionnaire. We created the latent
variable by choosing the most frequent answer for each patient to the questionnaire.
For example, the OSA-18 questionnaire had 18 questions, with 7 levels of responses
each, where patients responded to frequency of symptoms such as “Choking or
gasping sounds while asleep” with answers varying from “none of the time” to “all
of the time”. If a patient’s most frequent response to these 18 questions was “all of
the time”, the latent variable was set to this value. The PedsQ/PedsQL surveys had
no continuous variables so that this technique was sufficient. However, the OSA-
18 survey had the additional (discretized) OSA-overall variable—we combined this
with the most frequent answer to obtain a final latent variable in a manner similar
to the craniofacial variables (taking interactions of levels). Overall we had a total of
3 latent variables, one from each questionnaire. The results for these methods are
presented in Sect. 5.

To obtain the GNB model, we used the GaussianNB and CategoricalNB func-
tions (for continuous and discrete variables respectively) from the Naive Bayes
toolbox of the Scikit-learn library in Python, combining probabilities using the
conditional independence assumption. For SHNB and TAN, we instead used the
R packages bnlearn [27] and gRain [11] to obtain posterior probabilities (inference)
and the model (learning).
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4.3 Unsupervised Learning

In addition to the supervised learning methods described in the previous sections,
we considered exploring data using unsupervised learning methods, especially
clustering analysis. Since we had the true class labels for our data (OSA or no
OSA), we used these to determine parameters for our methods, and to choose labels
for clusters that give the higher accuracy. In the real world, the clinician/statistician
would not have this luxury, and would have to analyze the two clusters produced by
the methods to decide which label (OSA or no OSA) applies to each. We however
take advantage of the known diagnosis to provide evaluation measures comparing
the performance of our clustering methods in the best case scenario (best choice of
parameters and label permutation).

To cluster the survey respondents, we applied five different clustering
approaches:

1. Density-based spatial clustering of applications with noise (DBSCAN) [9]
2. Cut-Cluster-Classify (CCC) [35]
3. Spectral clustering [38]
4. Continuous k-Nearest Neighbour approach (CkNN) [4]
5. Thresholding density using qk (see Sect. 4.3.5)

Among these five clustering approaches, DBSCAN and CCC are density-based
clustering methods, while spectral clustering and CkNN are graph-based clustering
methods. The tuning of each method’s parameters was done by comparing the F1-
score (also known as the Dice coefficient), i.e., choosing parameters that gave the
highest F1-score measure.

4.3.1 Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)

DBSCAN is a clustering method that finds neighbourhoods of tightly grouped
points i.e., high density regions and assigns them to clusters. The method first
finds “core points” that form the center of each cluster, and then connects each
core point to its close-by neighbouring points, thereby creating the clusters. Points
that fall far from such high density regions are labelled outliers. Since we only
wanted two classes, we placed all outliers in the class that gave the largest F1-score.
The two main parameters for this method are: min_samples, which refers to
the minimum number of neighbouring points required to define a core point; and
ε, the maximum distance allowed between two points in each neighbourhood. We
found min_samples=2 to give the best F1-score for all methods (since we ran all
experiments with the same number of points, this parameter is shared). The value
of ε on the other hand, highly depends on the distance metrics, so we studied the
distribution of distance values in each distance metric, which can be seen in Fig. 11.
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This gave us a good range of values to try, and we again chose the one that gave the
optimal F1-score. The optimal values can be seen in Table 10.

4.3.2 Cut-Cluster-Classify (CCC)

The Cut-Cluster-Classify method divides the labeling task into three steps. It starts
by picking points that pass a fixed threshold cutoff on the sample density. The points
thus obtained are then clustered by connected components. Lastly, the remaining
points are classified into one of these clusters.

The algorithm requires two parameters: the number of points to sample, and the
k value used to define the sample density qk:.

qk(x) = 1

||x − xk|| , (1)

where xk denotes the kth nearest neighbour of point x. The parameters that give the
best F1-scores can be found in Table 11(b).

4.3.3 Spectral Clustering

Spectral clustering exploits the graph structure of data to find an appropriate
clustering of its nodes. The classical algorithm for this method starts by constructing
a normalized graph Laplacian matrix from similarity measures, then calculates its
eigenvectors and uses k-means clustering on these. The only parameter needed is
the number of clusters, which for all our experiments is 2.

4.3.4 Continuous k-Nearest Neighbour Approach (CkNN)

CkNN clustering uses a continuous scale to construct a representative graph of
the data. At each scale, it finds a clustering, and then uses consistent homology
to choose the best scale. Parameters needed for this method include: the number
of points needed to define a neighborhood, and the k value required to define the
sample density qk ((1) under Sect. 4.3.2). The values with the best F1-scores are
given in Table 11(a).

4.3.5 Distance Metrics and Thresholding Density Using qk

For clustering algorithms, one of the most important issues is which distance metric
to use. We compared the F1-scores of clustering methods using five different metrics
for discrete points: Euclidean, Cosine, Correlation, City block (or Manhattan), and
1 minus the absolute value of the Pearson coefficient. The results can be seen
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in Tables 12, 13, and 14. Note that the metric giving the best results varied for
the different clustering methods. We chose to report the quality metrics for the
Manhattan distance in Tables 3, 5, and 7 since this distance seems to be consistently
good for all the methods. Figure 9 shows some of the labeling results.

Given the hypothesis that the classes differ by sample density, we also estimated
the sample density and found a threshold to cluster the data and compare with
the other methods. The sample density we used is qk with a 2-norm ((1) under
Sect. 4.3.2) along with Otsu’s method [23] to do the thresholding. This method
analyzes the distribution of values and finds the modes for a threshold value. Results
for this method are presented under the shorthand label “Threshold qk” in Sect. 5.

5 Results

For each method and each data subset, we assess classification success by measuring
the accuracy, positive predictive value (PPV, the proportion of subjects classified as
having OSA that indeed have OSA), negative predictive value (NPV, the proportion
of subjects classified as not having OSA that are controls), sensitivity (the proportion
of OSA patients who were classified as having OSA), and specificity (the proportion
of controls who were classified as not having OSA). These measures are standard
in clinical research literature. To assess the stability of each method, we used a
ten-split cross validation, or ten different training/test splits of the cleaned data.
About 58% of survey respondents whose responses were used in testing or training
sets had diagnosed pediatric OSA; this is our no-information rate. Measures for
each method are reported in the form of mean ± standard deviation in Tables 3, 5,
and 7. Unsupervised learning methods had only one measure to report as they do
not have training and test splits (see Sect. 4.3). These are provided for comparison
of methods amongst each other only. We note that when we applied QDA to the
combined survey and craniofacial data, some classes were too small to estimate
their respective covariance matrices. Therefore, we did not obtain any results for
QDA.

Additionally, for unsupervised methods, we include the Adjusted Rand Index in
Tables 4, 6, and 8. The Rand index is a similarity measure between two clusters
that evaluates the frequency of agreements in clustering pairs of data points. The
adjusted Rand index is the corrected version of the Rand index that accounts for
chance. Here we compare our clustering results to the true class labels. Assuming
our data has k true classes, and our clustering method produces k clusters, we obtain
a k × k contingency matrix X, where Xij represents the number of elements of the
ith cluster that belongs to the j th true class. If we represent the sum of the ith row
by ai = ∑k

j=1 Xij , and the sum of the j th column by bj = ∑k
i=1 Xij , the Adjusted

Rand index (ARI) is given by
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Table 3 Performance measures for all supervised and unsupervised learning methods applied to
the survey data set. Best performances by each metric are bolded. Supervised methods were applied
to ten different train/test splits; their performance measures are recorded in the format of mean
performance plus/minus standard deviation. Unsupervised learning methods do not take training
sets, so only mean performance is reported. Note that the Cut-Cluster-Classify and DBSCAN
methods classified all data as having OSA, while the CkNN method classified all but one subject
as having OSA; see Fig. 9. We do not consider these methods to be informative

Performance measures of classification methods on survey data

Method Accuracy PPV NPV Sensitivity Specificity F1 score

LDA 0.61 ± 0.09 0.49 ± 0.10 0.71 ± 0.12 0.58 ± 0.15 0.64 ± 0.08 0.52 ± 0.11

LR 0.54 ± 0.10 0.43 ± 0.12 0.66 ± 0.13 0.58 ± 0.12 0.52 ± 0.16 0.48 ± 0.10

DT 0.69 ± 0.05 0.77 ± 0.07 0.59 ± 0.14 0.73 ± 0.11 0.63 ± 0.11 0.58 ± 0.10

RF 0.77 ± 0.04 0.70 ± 0.15 0.80 ± 0.06 0.65 ± 0.10 0.84 ± 0.05 0.67 ± 0.11

NNET 0.72 ± 0.04 0.63 ± 0.12 0.79 ± 0.07 0.68 ± 0.12 0.75 ± 0.11 0.64 ± 0.07

SVM 0.77 ± 0.04 0.81 ± 0.06 0.69 ± 0.13 0.81 ± 0.07 0.69 ± 0.07 0.69 ± 0.08

k-NN 0.74 ± 0.07 0.89 ± 0.03 0.61 ±0.13 0.67 ± 0.10 0.86 ± 0.05 0.71 ± 0.11

GNB 0.81 ± 0.03 0.88 ± 0.03 0.70± 0.10 0.79 ± 0.06 0.81 ± 0.07 0.83 ± 0.03
TAN 0.78 ± 0.05 0.77 ± 0.07 0.79 ± 0.12 0.91 ± 0.05 0.56 ± 0.10 0.83 ± 0.04

SHNB 0.75 ± 0.03 0.78 ± 0.06 0.70 ± 0.16 0.85 ± 0.07 0.57 ± 0.12 0.81± 0.05

Spectral 0.55 0.63 0.42 0.62 0.43 0.63

Threshold
qk

0.77 0.79 0.75 0.87 0.63 0.83

Table 4 Adjusted Rand index presented for clustering methods on survey data. Values close to
0 indicate a random chance results while those closer to 1 indicate a perfect clustering. Note that
DBSCAN and CCC produced only one cluster

Adjusted Rand index for clustering methods on survey data

DBSCAN CCC Spectral CkNN Threshold qk

ARI 0 0 0.0023 0.0067 0.2937
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Note that the ARI does not depend on the number of clusters and is invariant
under the permutations of the clusters. The score is bounded between −1 and 1,
where higher scores indicate better agreement. A score of 1 indicates a perfect
clustering, scores close to 0 indicate a random clustering (no information), and
negative numbers indicate a performance worse than random clustering.
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5.1 Results for Survey Data

Of all the classification techniques applied to the survey data, GNB, Random forests
(RF), k-nearest neighbors performed the most consistently. Unsurprisingly, LR
had the lowest accuracy at 0.54 ± 0.10, falling below the no information rate.
GNB had the highest accuracy scores (0.81 ± 0.03) and high F1 score (0.83 ±
0.03) creating the best overall division of the two classes. K-NN had the highest
specificity followed by RF (0.80 ± 0.06), indicating that these methods are the best
at identifying OSA patients (having low false positives). In addition, k-NN also had
the highest PPV (0.89 ± 0.03), while RFs had the highest NPV (0.80 ± 0.06) score.
We further note that the TAN method produced the highest sensitivity (0.91 ± 0.05).

Amongst the clustering methods, DBSCAN, CCC classified all, and CkNN
classified almost all data into one cluster thereby giving no information—the ARI
scores for these methods are very close to 0. On the other hand, spectral clustering
produced two clusters but had an accuracy of only 55%, below our no-information
rate of 58%. The ARI of this method (0.0023) falls below that of CkNN (0.0067)
indicating its poor performance. Threshold qk density produces the best results
amongst clustering methods with an accuracy of 0.77, sensitivity of 0.87 and an F1
score of 0.83, the latter two being competitive with supervised methods. It lacked
the most in specificity (0.62). The ARI of this method was 0.2937—indicating a fair
but not ideal clustering. All performance values for techniques as applied to survey
data can be found in Tables 3 and 4.

5.2 Results for Craniofacial Data

5.2.1 Results: CF Distributions

In comparing the distributions of craniofacial variables, we found that the three
variables with the largest difference between patients and controls were Palate
Score, Lower Face Height, and Overjet Score. The other variables may have some
difference in distribution shapes (see Table 9 and Figs. 2 and 3), but overall do not
appear as different when comparing control subjects and OSA subjects. This is not
to say that all other craniofacial variables should be ignored; rather, clinicians should
pay extra attention to variables Palate Score, Lower Face Height, and Overjet Score
when evaluating a patient.

5.2.2 Results: Classification with Craniofacial Data

Table 5 displays results of various classification methods applied to craniofacial
data. Overall, unlike survey data, there was no one method that stood out over the
rest in the overall performance, with multiple methods achieving the highest value
for each measure. The ARI of these methods are presented in Table 6.
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Table 5 Performance measures for all supervised and unsupervised learning methods applied to
the craniofacial data set. For each metric, the best performance, as considered both by mean and
standard deviation, is in bold. Supervised methods were applied to ten different train/test splits;
their performance measures are recorded in the format of mean performance plus/minus standard
deviation. Unsupervised learning methods do not take training sets, so only mean performance in
classification is reported. Note that the Cut-Cluster-Classify method and DBSCAN classified almost
all data as having OSA. As such, we do not consider these methods to be informative

Performance measures of classification methods on craniofacial data

Method Accuracy PPV NPV Sensitivity Specificity F1 score

LDA 0.63 ± 0.07 0.49 ± 0.22 0.74 ± 0.11 0.59 ± 0.26 0.70 ± 0.18 0.56 ± 0.09

LR 0.66 ± 0.06 0.59 ± 0.18 0.76 ± 0.09 0.63 ± 0.16 0.71 ± 0.16 0.57 ± 0.08

DT 0.70 ± 0.06 0.78 ± 0.08 0.62 ± 0.16 0.76 ± 0.11 0.63 ± 0.16 0.60 ± 0.11

RF 0.66 ± 0.07 0.56 ± 0.15 0.77 ± 0.09 0.67 ± 0.15 0.67 ± 0.12 0.59 ± 0.11

NNET 0.67 ± 0.08 0.58 ± 0.17 0.77 ± 0.09 0.67 ± 0.13 0.69 ± 0.15 0.60 ± 0.09

SVM 0.70 ± 0.06 0.77 ± 0.08 0.62 ± 0.17 0.76 ± 0.10 0.63 ± 0.14 0.60 ± 0.10

k-NN 0.66 ± 0.07 0.77 ± 0.11 0.56 ± 0.17 0.67 ± 0.14 0.67 ± 0.18 0.58 ± 0.11

GNB 0.69 ± 0.05 0.78 ± 0.07 0.59 ± 0.13 0.71 ± 0.09 0.67 ± 0.09 0.74 ± 0.04
TAN 0.67 ± 0.07 0.77 ± 0.07 0.56 ± 0.16 0.70 ± 0.11 0.64 ± 0.14 0.72± 0.05

SHNB 0.69 ± 0.05 0.78 ± 0.08 0.58 ± 0.13 0.72 ± 0.08 0.66 ± 0.12 0.74 ± 0.05
Spectral 0.53 0.65 0.42 0.51 0.57 0.57

CkNN 0.71 0.71 0.69 0.88 0.43 0.78
Threshold
qk

0.71 0.71 0.69 0.88 0.43 0.78

Table 6 Adjusted Random index presented for clustering methods on craniofacial data. Values
close to 0 indicate a random chance results while those closer to 1 indicate a perfect clustering.
Negative values indicate performance worse than random chance

Adjusted Rand index for clustering methods on survey data

DBSCAN CCC Spectral CkNN Threshold qk

ARI 0 −0.0042 −0.0016 0.1536 0.1536

Support vector machines and DT had the best accuracy (0.70 ± 0.06), GNB,
SHNB and DT produced the best PPV (0.78 ± 0.07, 0.78 ± 0.08, 0.78 ± 0.08),
NNET and RF tied for best NPV (0.77 ± 0.09), SVM and DT shared the best
sensitivity (0.76 ± 0.10, 0.76 ± 0.11), and LR had the best specificity (0.71 ±
0.16). Note that GNB and SHNB had the highest F1 score (0.74 ± 0.04 and 0.74 ±
0.05 respectively), with a competitive accuracy, producing the best division of the
two classes amongst the methods explored.

It follows that if we only use craniofacial data, DT and SVM have the lowest
false negative rates helping identify patients with no OSA, while LR, surprisingly,
produces the lowest false positives (followed closely by LDA and NNET) whence
being ideal for identifying subjects who do have OSA. Compared to the best
performances in these measures in survey data, the means of measures are lower
and the standard deviations are larger, indicating that the performance is worse and
less stable (Table 5).
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For the unsupervised methods, CCC and DBSCAN classifies almost all data into
one cluster, thereby producing almost no information and achieving ARIs close to
0. Spectral clustering continues to perform poorly with an accuracy of 53% falling
below the no information rate of 58%. CkNN and Threshold qk performed the best
with identical results. Both had an accuracy of 0.71%, a sensitivity of 0.88% and a
F1 score of 78% beating the supervised methods. These scores indicate that out of
all methods, CkNN and Threshold qk are best at dividing the patients into the two
classes overall and can help exclude OSA in subjects that do not have it. However, a
low ARI score of 0.1536 indicates that the results are not much better than random
clustering. Further, these methods suffer a low specificity of 0.43.

We can conclude that while the craniofacial data can aid in diagnosis, it cannot
be used alone. On the one hand, the poor results of classification in craniofacial data
may be a self-fulfilling prophesy: OSA diagnosis in the clinical studies is based
on both, the questions and the craniofacial measurements. Therefore, there exist
patients who have normal craniofacial measurements but were still diagnosed with
OSA. On the other hand, the existence of OSA patients and controls having the exact
same craniofacial measurements indicates that craniofacial data by itself cannot be
used to distinguish the two groups. Additionally, unsupervised methods seem to
produce the best results on this data, granted the clusters are labelled in an optimal
manner.

5.3 Results for Combined Survey and Craniofacial Data

Lastly, we analyze the combined survey and craniofacial data to see how the two
work together in classification. Overall, the performance of each method was similar
to each method’s respective performance for survey data. Supervised algorithms
applied to the combined data generally outperformed algorithms applied only to
survey data or craniofacial data (see Tables 7, 5 and 3).

Once again, GNB had the highest accuracy (0.80 ± 0.03) and F1 score (0.83±
0.03) and a competitive PPV (0.88 ± 0.03) indicating a good overall division of
classes. TAN matched this F1 score and had the highest sensitivity (0.91 ± 0.04),
thereby being the best method for excluding OSA in subjects (having a low false
negative rate). The highest PPV (0.89± 0.04) and specificity (0.86± 0.07) was
achieved by k-NN, making it the best method for ensuring a low false positive rate,
i.e. for identifying OSA patients. RF closely follows in specificity (0.85 ± 0.04) and
also achieves the highest NPV (0.81 ± 0.06). All the other metrics for performance
either stayed about the same or slightly improved.

Figures 7 and 8 shows the important variables identified by RF for the combined
and Survey data sets respectively. There is only one craniofacial variable identified
as an important variable, i.e., “palate score”. This information is especially valuable
given that random forests performs competitively in many measures.

For unsupervised methods, CCC produced a single cluster, similarly to the
Survey data, while CkNN and DBSCAN classified almost all data into the OSA
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Table 7 Performance measures for all supervised and unsupervised learning methods applied to
the combined data set. Best performances by each metric are bolded. Supervised methods were
applied to ten different train/test splits; their performance measures are recorded in the format
of mean performance plus/minus standard deviation. Unsupervised learning methods do not take
training sets, so there is only one number reported for their performance measures. Note that the
Cut-Cluster-Classify method classified all data as having OSA, while the CkNN and DBSCAN
methods classified almost all data as having OSA; see Fig. 9. As such, we do not consider these
methods to be informative

Performance measures of classification methods on combined data

Method Accuracy PPV NPV Sensitivity Specificity F1 score

LDA 0.65 ± 0.09 0.53 ± 0.12 0.77 ± 0.12 0.70 ± 0.15 0.63 ± 0.09 0.59 ± 0.10

LR 0.52 ± 0.09 0.41 ± 0.11 0.64 ± 0.12 0.56 ± 0.11 0.50 ± 0.15 0.46 ± 0.09

DT 0.69 ± 0.05 0.76 ± 0.06 0.58 ± 0.14 0.73 ± 0.08 0.63 ± 0.10 0.56 ± 0.12

RF 0.78 ± 0.03 0.72 ± 0.10 0.81 ± 0.06 0.67 ± 0.08 0.85 ± 0.04 0.69 ± 0.07

NNET 0.75 ± 0.04 0.67 ± 0.12 0.80 ± 0.08 0.69 ± 0.11 0.80 ± 0.07 0.67 ± 0.08

SVM 0.76 ± 0.06 0.81 ± 0.06 0.70 ± 0.16 0.81 ± 0.11 0.68 ± 0.11 0.67 ± 0.10

k-NN 0.75 ± 0.08 0.89 ± 0.04 0.62 ± 0.15 0.69 ± 0.10 0.86 ± 0.07 0.72 ± 0.12

GNB 0.80 ± 0.03 0.88 ± 0.03 0.70 ± 0.10 0.79± 0.06 0.81 ± 0.07 0.83 ± 0.03
TAN 0.77 ± 0.04 0.76 ± 0.07 0.79 ± 0.12 0.91 ± 0.04 0.55 ± 0.09 0.83 ± 0.03
SHNB 0.76 ± 0.03 0.77 ± 0.08 0.72 ± 0.13 0.87 ± 0.06 0.57 ± 0.13 0.81± 0.02

Spectral 0.51 0.60 0.38 0.58 0.40 0.59

Threshold
qk

0.78 0.79 0.76 0.88 0.63 0.83

Table 8 Adjusted Random index presented for clustering methods on combined survey and
craniofacial data. Values close to 0 indicate a random chance results while those closer to 1
indicate a perfect clustering. Negative values indicate performance worse than random chance.
Note that CCC produced only one cluster

Adjusted Rand index for clustering methods on combined data

DBSCAN CCC Spectral CkNN Threshold qk

ARI 0.0137 0 −0.0065 0.0067 0.3064

cluster. These methods had ARI values close to 0 as displayed in Table 8, thereby
not producing very informative results. Spectral clustering continued to perform
poorly with a low accuracy of 51% and the worst ARI score of −0.0065. Again,
threshold qk performed best with a competitive accuracy and F1 score of 0.78 and
0.83 respectively, and a sensitivity of 0.88. As in the previous results, this would be
good for excluding OSA in patients. We note that it gives the highest ARI score thus
far at 0.3064 out of all datasets and clustering methods considered. Figure 9 further
helps illustrate that clustering by a threshold on density gives more meaningful
labels than the more complex methods. We also note that other methods tend to
produce only one cluster or very spread out clusters.

From the results, we observe that incorporating craniofacial data and the survey
data together do give the best performance in just about every metric. While
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craniofacial data does not perform well on its own, it does contribute to OSA
classification when combined with the survey data.

6 Conclusion and Future Research

We carried out Friedman’s test [26] for each performance measure using Survey and
Craniofacial Index (Tables 3 and 5). For the supervised learning methods (classifica-
tion), PPV (p-value = 0.017), sensitivity (p-value = 0.005), and F1-score (p-value
= 0.005) indicate statistical significance However, the Nemenyi test of the pairwise
comparison was not powerful enough to detect any significant differences between
the 10 classification methods. We did not perform Friedman’s test for unsupervised
(clustering) methods due to few number of methods.

In addition to assessing methods of classification, by considering three subsets
of the data (survey data only, craniofacial data only, and both combined) and using
interpretable classification methods such as random forests, we were able to look
at which variables played the largest role in separating OSA patients from controls.
Survey data usually had results very similar to that of combined data, likely because
there were only 8 craniofacial measurements considered in our data set. Although
performance on the survey data seem to be better than that on the craniofacial data,
in Sect. 3, craniofacial data was able to detect some OSA cases in the K-Mapper
algorithm that the survey data and combined data could not (see Fig. 5). This
suggests that it is worth considering the two data sets both, separately and combined,
in future algorithms. With the random forest algorithm, as shown in Fig. 7, various
survey questions such as those addressing daytime sleepiness and overall health
seem more important than the craniofacial variables, with the exception of palate
score. Overall, the survey data performed better in binary classification than the
craniofacial data. However, the latter did add useful information based on the
slight improvements in performance going from just survey data to combined data
(compare Tables 3 and 7).

Our results demonstrate that using inexpensive data can still make strong
predictions for a binary classification of being at a risk of OSA vs not having
OSA. In particular, random forests, Gaussian Naive Bayes classifiers, and k-nearest
neighbors performed the best. Of those successful methods, Random Forests and
Gaussian Naive Bayes are interpretable in that we can see which variables were
prioritized most in sorting. This information is valuable for clinicians in obtaining a
differential diagnosis.

Unsupervised (clustering) methods often clustered all or most data into one class,
providing uninformative results. Threshold qk was an exception, with a consistent



A Survey of Techniques for OSA Data 319

performance. Additionally, CkNN and threshold qk (in the best case scenario) seem
to perform better on craniofacial data on several metrics compared to supervised
learning. As shown in Fig. 9, the ground truth plot conjectures the hypothesis
that points in the control group tend to be in a high density region while those
in the patient group tend to be spread out in the data cloud. Using thresholding
best allows exploiting the difference in densities in the two classes, while methods
such as spectral clustering seemed to produce clusters with similar densities (again,
see Fig. 9). From these results we can only conclude that more points are needed
in order to apply a clustering approach and clustering techniques. Further, on our
dataset, considering clustering techniques that prioritize a difference in sample
density between classes would be valuable.

Using survey data and craniofacial data, we merely attempted to classify whether
a subject was diagnosed with OSA or not. However, this is a simplification of the
standard clinical classification of patients into the categories of having as no, mild,
moderate, or severe OSA, based on the apnea hypopnea index. The next natural step
in our work is to expand classification techniques to these four possible outcomes
and identifying which predictors indicate OSA severity. It would be interesting to
explore how the spreading out of OSA patients is affected by the severity of the
condition (no, mild, moderate or severe OSA).

Another interesting future direction is to repeat the algorithms but instead of
combining multiple surveys, isolate each survey and run each classification method
separately. In doing so, we may lend evidence to which survey is the most effective
in diagnosing OSA. We would do this for both the binary OSA classification and
the classification by the apnea-hypopnea index.

We hope to use this information to obtain an algorithm which can aid clinicians
in diagnosis and personalized treatment of a child with OSA. This algorithm would
be updated as we track children through treatment and follow up in their progress
towards healthy sleeping patterns.
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Appendix

Table 9 Table showing the frequencies of scores 0, 1, and 2 for the patient (P) group and the
control (C) group for each craniofacial metric, as well as the Earth Mover’s Distance between these
frequency distributions. According to the data, the craniofacial variables with the largest distribution
differences were palate score, lower face height, and overjet. However, as shown in Fig. 7, only the
palate score played a significant role in classification in the combined data set

Frequencies and earth mover’s distance for craniofacial data measures

Metric Group Score 0 Score 1 Score 2 EMD

Profile P 0.7477 0.0 0.2522 0.1243

C 0.9342 0.0 0.0658

Midface deficiency P 0.6126 0.3513 0.0360 0.1179

C 0.7895 0.1934 0.0132

Lower face height P 0.5766 0.3604 0.0630 0.1507

C 0.8026 0.1579 0.0395

Lip strain P 0.6306 0.2793 0.0900 0.1234

C 0.8158 0.1711 0.0132

Palate P 0.4775 0.4595 0.0630 0.1817

C 0.7500 0.2105 0.0395

Overjet P 0.6306 0.0 0.3694 0.1498

C 0.8553 0.0 0.1447

Overbite P 0.8919 0.0 0.1081 0.0633

C 0.9868 0.0 0.0132

Posterior bite P 0.8468 0.0811 0.0721 0.0846

C 0.9737 0.0132 0.0132

Table 10 Optimal ε values found for the DBSCAN method using the different features and
distance metrics

Euclidean Cosine Correlation Manhattan Pearson correlation

Survey data 9.73 0.16 0.13 65.85 0.13

CF data 2.19 0.10 0.92 4.00 0.18

Combined data 6.71 0.14 0.04 45.92 0.04
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Table 11 (a) Optimal parameter values found for the CkNN method using the different features.
(b) Optimal parameter values found for the Cut-Cluster-Classify method using the different features

(a) CkNN optimal parameters

is_neigh k

Survey data 3 2

CF data 7 2

Combined data 3 2

(b) CCC optimal parameters

n_samples k

Survey data 100 25

CF data 150 2

Combined data 100 2

Table 12 Survey data. F1-scores of using different metrics (rows) to construct the distance matrix.
The corresponding distance metric is the input for the different clustering methods (columns)

Metric DBSCAN Spectral CkNN Cut-Cluster-Classify (CCC)

Euclidean 0.75986 0.76534 0.76259 0.73993

Cosine 0.75986 0.55319 0.75540 0.75812

Correlation 0.76190 0.62000 0.75540 0.75986

Manhattan 0.75986 0.62857 0.76259 0.75540

Pearson coeff 0.7619 0.75812 0.75540 0.76259

Table 13 Craniofacial (CF) data. F1-scores of using different metrics (rows) to construct the
distance matrix. The corresponding distance metric is the input for the different clustering methods
(columns)

Metric DBSCAN Spectral CkNN Cut-Cluster-Classify (CCC)

Euclidean 0.75986 0.76534 0.78481 0.75986

Cosine 0.75986 0.76259 0.78481 0.75655

Correlation 0.75986 0.71937 0.74815 0.75986

Manhattan 0.75986 0.57143 0.78481 0.75090

Pearson coeff 0.75986 0.54144 0.76259 0.75986

Table 14 Combined data. F1-scores of using different metrics (rows) to construct the distance
matrix. The corresponding distance metric is the input for the different clustering methods
(columns)

Metric DBSCAN Spectral CkNN Cut-Cluster-Classify (CCC)

Euclidean 0.75986 0.76534 0.76259 0.75986

Cosine 0.75986 0.58537 0.7554 0.74453

Correlation 0.75986 0.61386 0.7554 0.75986

Manhattan 0.76534 0.58937 0.76259 0.75986

Pearson coeff 0.75986 0.75812 0.75540 0.75812
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Fig. 7 The plot of variable importance from random forests for the combined data. The left plot
ranks variables by their contributions to the mean decrease of the accuracy, while the right ranks
variables for their decrease in Gini score. The only craniofacial variable marked as important was
“palate score”; all other highly ranked variables were from the surveys
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Fig. 8 The plot of variable importance from RF for the survey data. The left plot ranks variables by
their contributions to the accuracy, while the right ranks variables for their decrease in Gini score.
The top three most important variables were from the same OSA-18 questionnaire, but questions
from each of the three surveys made the list



324 E. T. Winn et al.

NACSBDhturtdnuorG

NNkCgniretsulclartcepS

ytisnedelpmasdlohserhT)CCC(yfissalC-retsulC-tuC

Fig. 9 Kernel PCA coordinates of the combined survey and craniofacial data colored by the
resulting labels from each clustering method starting with the ground truth. In this plot, blue (dark)
points correspond to the control group while the yellow (light) ones correspond to OSA patients



A Survey of Techniques for OSA Data 325

)b()a(

)d()c(

Fig. 10 (a) Kernel PCA projection of all features of the data colored by sample density and the
distance matrices for the data set according to (b) Euclidean, (c) Correlation, and (d) Manhattan
metrics. The darker colors denote lower values and brighter colors denote higher values
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Fig. 11 The distribution of distance values given the different metrics for (a) survey data, (b)
craniofacial data, and (c) combined data
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