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Outline

e Background, Intro to the math (shapes)
 Why data augmentation important
 Why alpha shapes

* Moving to a pipeline
e Results in 2D (Neutrophils)
* Results in 3D (Teeth)



Motivation

Shape is important to study in many fields....
* Biology (e.g., cancerous tumors, organ shape)
* Anthropology/morphology (e.g., femur shape, teeth)
 Computer graphics

... but shape data comes in small sets!
* Difficult to come by
* Expensive to collect and store



History of Shape Statistics

* When we build a new model, standard is to test it on simulated
data and real data

* For shapes — there isn’t really simulated data!

* Existing work in shape statistics

 Statistics on landmarks (Albrecht et al. 2013), specific measurements,
point clouds, summary statistics (Turner et al. 2014, Wang et al. 2022)

« Sampling from manifolds/point clouds, shape reconstruction (Fasy et al.
2022)
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(Albrecht et al., 2013)



What is a “Shape”?

(shape = simplicial complex representation of compact Riemannian
Manifold embedded in Euclidean space )

In other words, anything | can approximate with topological “building
blocks”




a-shapes

Let B, (u) denote the ball of radius
a at a point u € S.

Let V(u) denote the Voronoi cell of u
Let R,(a) = B,(u) NV (u)
The union of R,(a)for all pointsu € S

form a cover of S,the nerve of which
is the a — complex

The boundary of the a — complex
defines the a — shape

(Edulsbrunner and Harer)



Conditioning Number T

Represents the “tubulature” — a characteristic that captures the local
geometry and global topology of a shape.




A probability model for alpha shapes

T

* Captures local geometry and global

topology
Tells us how small to Tells us how many points we need to
make a to honor original sample for appropriate density
shapes (Niyogi, Smale, and Weinberger, 2008)

Point Cloud

e Vertices in space sampled from
Combined gives us underlying manifold
the full shape * Base for the shape
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* Instructions to connect the vertices
* Can be thought of as a
“granularity” parameter
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(ii) Calculate Conditioning NumberTr
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i. Consider shape k

*Repeat for all boundary points p: 7. = T,

ii. For point p, find distance
to neighboring points

iii. For point p, find distance to
circumcenters, multiply by 2

iv. The next nearest point
outside of the max distanceis Tp

**Repeat for all shapes k: 7=min,(r,)

(iii) Generate Point Cloud

i. Take combined point
cloud from J shapes
from input data
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ii. For point p, consider ball
of radius 7/8 centered at p

iii. Sample n points, where n is

iv. Accept/reject points based

function of Tand &, from ball on acceptance probabilty function

*Repeat for all points p in combined point cloud

(iv) Output
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(i) Input
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(ii) Calculate Conditioning NumberTr
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i. Consider shape k ii. For point p, find distance iii. For point p, find distance to iv. The next nearest point
to neighboring points circumcenters, multiply by 2 outside of the max distance is Tp

*Repeat for all boundary points p: 7, =?p **Repeat for all shapes k: 7=min(r,)




(iii) Generate Point Cloud

i. Take combined point
cloud from J shapes
from input data
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ii. For point p, consider ball  iii. Sample n points, where n is
of radius 7/8 centered at p

iv. Accept/reject points based
function of Tand &, from ball on acceptance probabilty function

*Repeat for all points p in combined point cloud




Acceptance Probability for a Point y

0 p(y) <k
P(accept y) =< 1—exp(—=5(p(y) —k)) k<ply) <k=*J
1 p(y) > kxJ

* yis the proposed new point to add to the generated point cloud
* p(y) is number of points in base point cloud within radius t/4 of y
* Jis number of shapes from original set selected for base point cloud.

* K is the minimum number of points from the base point cloud that we
require to be within radius t/4 of new point y



(iv) Output
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Toy Example: Annuli

e The Data:

* 50 simulated annuli, as a-shapes
e Each annulus is 500 points, sampled between radius 0.25 and 0.75, o = 0.15

* The Analysis:
* 43 characteristics for 2D shapes measured — e.g., area, perimeter, centroids

* Manifold Regularized AutoEncoder (MRAE) used for dimension reduction of
shape characteristic vectors.



Annuli Results
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2D Shapes: Healthy and Septic Neutrophils

* Neutrophils are a type of white blood cell

* Immunologists study the change in shape
with addition of a stimulant to shed
insight on immune system response

e Of particular interest are septic
neutrophils — which are incredibly hard to
collect




2D Shapes: Healthy and Septic Neutrophils

e The Data:

* Neutrophils from healthy human tissues with seven
stimulants added

e Shape recorded before adding stimulant and 30
minutes after adding stimulant

e Given as binary masks, converted to simplicial
complexes for the pipeline

* The Analysis:

* 43 characteristics for 2D shapes measured —e.g.,
area, perimeter, centroids

* Manifold Regularized AutoEncoder (MRAE) used for
dimension reduction of shape characteristic vectors.
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Results

MRAE 2

Healthy vs LPS vs Septic MRAE
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Results
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3D Shapes: Primate Teeth

e The Data:

* CT scans of mandibular molars from two different primate species,
Microcebus and Tarsius

» Teeth prealigned and scaled before sending through pipeline

* The Analysis:

* Procrustes Analysis (Gower, 1975) via auto3dgm (Puente, 2013) assigns 400
landmark points and aligns based on size and scale

e Uniform Manifold Approximation Projection (UMAP) (Mclness et al., 2018)
shows how the data cluster according to landmarks.



Results

(a) Real Microcebus Teeth

(d) Generated Tarsius Teeth

(c) Real Tarsius Teeth

(b) Generated Microcebus Teeth
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UMAP of Teeth Landmarks
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Conclusion and Further Work

* Presented a pipeline for generating new shapes to augment existing
data sets

* Work to be extended to weighted alpha shapes, which have different
applications (e.g., DNA, protein, where vertices are interpretable)

* ashapesampler R package will be available on Github.
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