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Background



What is topology?

Figure: “A topologist cannot tell the difference between a coffee
cup and a donut.”

Frame from YouTube video (Sagerman, 2015)



What is Topological Data Analysis (TDA)?

“TDA aims at providing well-founded mathematical,
statistical and algorithmic methods to infer, analyze and
exploit the complex topological and geometric structures
underlying data that are often represented as point clouds
in Euclidean or more general metric spaces.” (Chazal and
Michel, 2017)



What is Topological Data Analysis (TDA)?

“TDA aims at providing well-founded mathematical,
statistical and algorithmic methods to infer, analyze and
exploit the complex topological and geometric structures
underlying data that are often represented as point clouds
in Euclidean or more general metric spaces.” (Chazal and
Michel, 2017)



Basic Outline of TDA Algorithm

1. Input: finite set of points with a notion of
distance/similarity between them.

2. A “continuous” shape is built on top of data to
highlight underlying topology/geometry

3. Topological or geometric information is extracted from
this structure built on top of the data.

4. Extracted features give new families of
features/descriptors of the data.

(Chazal and Michel, 2017)
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Persistence Homology



Persistence Diagrams and Barcodes

Key

0-Homology

1-Homology

Parameter ε

Feature

Key
0-Homology
1-Homology

Birth (ε)

Death
(ε)

Chazal and Michel (2017)
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Example: Baseball Fielding



Comparing Persistence Diagrams
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Wp(B1, B2) = inf
γ:B1→B2

( ∑
u∈B1

||u− γ(u)||p∞
)1/p

(1 ≤ p <∞)

W∞(B1, B2) = inf
γ:B1→B2

sup
u∈B1

||u− γ(u)||∞

(Bubenik, 2015)



Persistence Diagrams Application: Viral

Evolution

(Chan et al., 2013)



Persistence Diagrams Application: Viral

Evolution
I Each genetic code is a

point, visualize with
Principal Coordinate
Analysis

I Use genetic distance as
the parameter ε

I Goal: Capture complex
exchanges with more than
two organisms, statistical
patterns of cosegregation

(Chan et al., 2013)



Persistence Diagrams Application: Viral

Evolution

Figure: Simulated viral evolution, with and without
reassortment. (Chan et al., 2013)



Persistence Diagrams Application: Viral

Evolution

Figure: Persistent homology detects horizontal evolution
(dimension 1) and complex reticulate evolution (dimension 2) in
avian influenza. (Chan et al., 2013)



Comparing Persistence Diagrams

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Birth

D
ea

th

B1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Birth

D
ea

th

B2

Wp(B1, B2) = inf
γ:B1→B2

( ∑
u∈B1

||u− γ(u)||p∞
)p

(1 ≤ p <∞)

W∞(B1, B2) = inf
γ:B1→B2

sup
u∈B1

||u− γ(u)||∞

[(Bubenik, 2015), (Dey and Xin, 2019)]



Comparing Persistence Diagrams

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Birth

D
ea

th

B1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Birth

D
ea

th

B2

Wp(B1, B2) = inf
γ:B1→B2

( ∑
u∈B1

||u− γ(u)||p∞
)p

(1 ≤ p <∞)

W∞(B1, B2) = inf
γ:B1→B2

sup
u∈B1

||u− γ(u)||∞

[(Bubenik, 2015), (Dey and Xin, 2019)]

O(m5/2 log(m))



Average of Two Persistence Diagrams
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Average of Two Persistence Diagrams
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Recap: Persistence Diagrams

Pros:

I Can look at underlying manifold, which contains
information not available from data alone

I Descriptor in a metric space

I Stable against outliers, perturbations

Cons:

I Difficult to integrate with statistics/machine learning
tools we already have

I Metric difficult to calculate

I No guarantee of a unique mean
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Persistence and Statistics



Persistence Landscapes

1-st Homology group (holes)

(Bubenik, 2015)
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Persistence Landscapes

1-st Homology group (holes)

Label regions by Betti number β1

Parameter(ε)

(Bubenik, 2015)



Persistence Landscapes λ

λ1 bounds region where β1 ≥ 1
λ2 bounds region where β1 ≥ 2

Definition
Let λ = (λ1, λ2, ...),λ

′ = (λ′1, λ
′
2, ...) be persistence

landscapes corresponding to persistence diagrams B1, B2.
The p-landscape distance (1 ≤ p <∞) is given by

Λp(B1, B2) = ||λ− λ′||p =

[∑
k

∫
R
|λk(t)− λ′k(t)|pdt

]1/p

[(Bubenik, 2015),(Kovacev-Nikolic et al., 2016), (Bubenik
and D lotko, 2014)]
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Persistence Landscape Advantage: Unique Means!

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Birth

D
ea

th

B1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Birth

D
ea

th

B2

Λ1 Λ2

Mean(Λ1,Λ2)

(Bubenik, 2015)



Persistence Landscape Advantage: Unique Means!

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Birth

D
ea

th

B1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Birth

D
ea

th

B2

Λ1 Λ2

Mean(Λ1,Λ2)

(Bubenik, 2015)



Persistent Landscape Advantage: It’s a random

variable!

X = f(λk(t)) =
∑
k

∫
R
tλk(t)dt

I Persistent landscapes are in a separable, Banach space.
(Lp(S), where S = N× R or R2)

I Translation: we can use the Strong Law of Large
Numbers and the Central Limit Theorem (with
enough samples, we can assume a Gaussian
distribution).

I When p = 2, this space is also Hilbert. ...which gives
us a positive definite kernel!

(Kovacev-Nikolic et al., 2016)
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Persistence Landscape Application:

Conformations of Maltose-Binding Protein (MBP)

I MBP can have an open or closed conformation

I Setup: shape of one MBP can be represented as 370
points in R3.

I Dynamic cross correlation on 370× 370 matrix for 7
closed, 7 open MBPs

I Underlying distribution: Two-sample permutation
t-test

I H0 : µC = µO, Ha : µC 6= µO
I Classified via SVM (using 50 points from the

persistence landscapes)

(Kovacev-Nikolic et al., 2016)
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Persistence Landscape Application:

Conformations of Maltose-Binding Protein

Figure: Left: closed conformal structure with ligand, Right:
open conformal strcture (Kovacev-Nikolic et al., 2016)



Conformations of Maltose-Binding Protein

(MBP) Mean Landscapes p-values

0-th
Homology

1-st
Homology

(Kovacev-Nikolic et al., 2016)

p = 5.83× 10−4

p = 5.83× 10−4



Recap: Persistence Landscape

Pros:

I Can treat persistence landscapes as random variables

I Distance easier to calculate and gives a lower bound
for the p-Wasserstein distance/bottleneck distance.

I Set up to apply hypothesis testing and machine
learning methods.

Cons:

I Vector form takes extra processing

I Limited in which machine learning methods can be
used
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Persistence Images

Steps: 0 1 2

0. Calculate persistence diagram from data

1. Define T : R2 → R2 by T (x, y) = T (x, y − x). Then
T (B) is transformation of persistence diagram.

2. Choose f weighting function (depends on the
application)

(Adams et al., 2017)



Persistence Images

Steps: 0 1 2

0. Calculate persistence diagram from data

1. Define T : R2 → R2 by T (x, y) = T (x, y − x). Then
T (B) is transformation of persistence diagram.

2. Choose f weighting function (depends on the
application)

(Adams et al., 2017)



Persistence Images: Algorithm

Steps: 0 1 2-4

3. Choose φ probability function over R2
+ (Adams et al

used joint Gaussian with mean µ and parameter σ2).

4. Calculate the persistence surface, given by

ρ(B) =
∑
u∈B

f(u)φ(u)

(Adams et al., 2017)



Persistence Images Algorithm
Steps: 0 1 2-4 5-6

5. Divide the surface into a grid (can be as coarse or fine
as user decides)

6. The persistence image of PD B is the collection of
pixels given by

I(ρB))p =

∫ ∫
p

ρBdydx

(Adams et al., 2017)



Persistence Image Application: Histology Image

I Goal: Characterize the glandular architecture of
histology images and use for classification

I Data: MICCAI 2015 Gland Segmentation Challenge
Contest data set (165 images, 85 training, 80 test)

I Marked nucleoids in the images and used those as their
“point cloud”)

(Chittajallu et al., 2018)
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Persistence Image Application: Histology Image

I Weighting function:

f(b, p; c) =


0 if p ≤ 0

p/c if p ≤ c

1 otherwise

where b is the birth, p is the persistence, and c is the
maxixum persistence over all features.

I Probability distribution: Gaussian

I Persistence Surface (u = (ub, up)):

ρ(B) =
∑

u∈T (B)

f(ub, up; c)N (u, σ2I)

(Chittajallu et al., 2018)
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Persistence Image Application: Histology Images

Figure: Top row: benign tissue. Bottom Row: malignant tissue.
(Chittajallu et al., 2018)



Recap: Persistence Images

Pros:

I Takes just as much computational power as Persistence
Landscapes, but far better in classification tasks

I Once calculate, have vector, so can use for almost all
machine learning tasks

I Computational efficiency in distance calculations

I Flexible in applications, parameters can be tailored

Cons:

I Difficult to recover persistence diagram from
persistence image

I Computational efficiency for preprocessing into vector
form can be improved

(Adams et al., 2017)
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Topological Modeling of 3D Shapes

Figure: ”Images of a calcaneous [heel bone] from two different
angles” Turner et al. (2014)



Persistence Homology Transform (PHT)

Let M be a shape of Rd that can be written as a finite
simplicial complex K.

And let v ∈ Sd be any unit vector over the unit sphere.

We define a filtration K(ν) of K parameterized by a height
function r as

K(ν)r = {x ∈ K|x · ν ≤ r}

The k-th dimensional persistence diagram Xk(K, ν)
summarizes how topology of the filtration K(ν) changes
over the height parameter r.

(Turner et al., 2014)
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Persistent Homology Transform: Illustration



Persistent Homology Transform: Illustration



Persistence Homology Transform: Shape Anlaysis

Figure: Phylogenetic groups for primate calcanei with 67 genera
(Turner et al., 2014)
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