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Outline of Talk

I Background on Pediatric Obstructive Sleep Apnea
(OSA)

I Work with structured data (Winn et al, 2020)

I Work with unstructured data (Tymochko et al, 2020)

I Future Directions



Background



Obstructive Sleep Apnea (OSA)

I A form of sleep-disordered breathing characterized by
recurrent episodes of partial or complete airway
obstruction during sleep.

I OSA affects 1-5% of elementary school-age children.
I Health care utilization 240%.
I Behavioural issues, reflux, obesity, hypertension,

cardiovascular dysfunction, and neurocognitive
dysfunction.



Classes of OSA

One of most important measurements is Apnea-Hypopnea
Index (AHI), which determines the severity of OSA.

I AHI ≤ 1: None

I 1 ≤ AHI ≤ 5: Mild

I 5 < AHI ≤ 10: Moderate

I 10 ≤ AHI: Severe



Challenge of Diagnosis

Diversity of symptoms in children makes diagnosis of OSA
not so clear cut

I Surveys/Questionnaires
I Pros: Fast, inexpensive
I Cons: Missing Data, usually baseline

I Polysomnography (PSG)
I Pros: Gold standard for OSA
I Cons: Expensive, takes a lot of time, limited access

I Alternative diagnostic tools: biomarkers, genes,
modelling airflow in upper-airway, airway shape, facial
morphology



Research Objectives

I Use classical statistical and machine learning methods
to demonstrate survey data can be effective in
detecting hidden signals in complex data

I Use persistent homology and Markov chains to classify
sleep states from polysomnography tests

I Ultimate Goal: Build algorithm to expedite and aid
clinicians in diagnosing OSA



Structured Data



$ Raw data

I 200 subjects from two different clinics

I 172 variables from 6 surveys, 1 set of facial
measurements
I Child’s Sleep habits
I Quality of Life Survey
I Pediatric Quality of Life Child Report
I Pediatric Quality of Life Parent Report
I Pediatric Sleep Survey
I Health Screening
I Craniofacial Index Measures (Complete data set)



Methods: Data Splitting

I 173 Subjects (67 Controls, 106 Patients)

I 157 input variables

I Goal: Classify OSA vs No OSA (patient vs
control)

I Missing values imputed using MissForest from
MissingPy package for Python

I Split the data set so 70% contained in training set,
30% in testing set.

I Each method trained/tested on 10 different splits to
measure stability in addition to other success measures

I Python packages: MissingPy, scikit-learn

I R packages: mass, randomForest, nnet, bnlearn, gRain,
glnet



Statistical/Machine Learning Methods Applied

I Supervised Learning Methods
I Linear/Quadratic Discriminant Analysis, Logistic

Regression, Decision Trees, Random Forests, Neural
Networks, Support Vector Machines, supervised
k-nearest neighbors

I Used cross validation grid search to optimize
parameters

I Bayesian Classifiers
I Näıve Bayes, Tree augmented Bayesian classifier,

Semi-Hierarchical Bayesian classifier
I Did have to discretize some continuous random

variables (eg time asleep)

I Density Based Clustering (no train/test split)
I DBSCAN, Spectral, CkNN, Cut-Cluster-Classify,

Threshold sample density



Results

Figure: Kernel PCA projection of density based clustering with
threshold sample density. Purple marks the controls, yellow
marks the patients. (Winn et al, 2020)



Results

Measure Best Score Method

Accuracy 0.78 ± 0.03 Random Forests,
0.78035 DBC Threshold

Positive Predictive Value 0.89 ± 0.02 k-Nearest Neighbors
Negative Predictive Value 0.81 ± 0.06 Random Forests

Sensitivity 0.90 ± 0.06 Näıve Bayes
0.87736 DBC Threshold

Specificity 0.85 ± 0.04 Random Forests

Table: Best methods by each unit of measure used in standard
clinical literature (Winn et al, 2020)



Unstructured Data



$$$ Raw Polysomnography (PSG)

I 78 children recruited who had taken PSG

I Project approved by Health Research Ethics Board at
the University of Alberta

I Analyze subset of 8 patients - 2 from each OSA class
(none, mild, moderate, severe)



Sleep Stages

Figure: Hypnograms of a patient with no OSA (top) and severe
OSA (bottom) (Tymochko et al, 2020)

I Wake

I Rapid Eye Movement (REM)

I Non Rapid Eye Movement 1 (NREM1) (light sleep)

I Non Rapid Eye Movement 2 (NREM2)

I Non Rapid Eye Movement 3 (NREM3) (deep sleep)



Methods of Exploration

Figure: Time series data can be embedded in a point cloud,
which can then be used to generate a persistence diagram.
Python packages used: ripser, scikit-tda, Persim. (Tymochko et
al, 2020)

I Train and test sleep states on each individual patient,
as encoded as persistence images

I Do for 2-5 classes, using several classifiers, compare
results



Methods of Exploration

Figure: Cohen’s κ plots and representations of transition
probabilities for a subject with No OSA (left) and a subject
with severe OSA (right) (Tymochko et al, 2020)

I Goal: Explore automatic classification of sleep states,
observing relationship between OSA and sleep patterns



Results

Figure: Classifiers include gradient boosting (GB), random forests
(RF), ridge classification (RC) support vector classifier (SV),
K-neighbors classifier (KN), and decision trees (DT). (Tymochko et
al, 2020)

Cohen’s κ and Markov Chains were unable to distinguish
severe OSA from no OSA.



Future Directions



Future: Structured Data

I Want to combine the best of the best methods to
maximize accuracy, PPV, NPV, sensitivity, specificity

I Want to categorize via the true AHI bins

I Delve further into the driving factors behind these
methods



Future: Unstructured Data

I Explore issue of class imbalance in performance,
subsampling data to get relatively equal distribution of
classes

I Other featurization techniques of persistence diagrams

I Explore application of convolutional neural networks
(CNN) and recurrent neural networks (RNN) to
classification



Preprints!

I Work started at Women in Data Science and
Mathematics (WiSDM) Workshop at Institute for
Comupational and Experimental Mathematics
(ICERM), Providence, RI, July 2019

I E.T. Winn, M. Vazquez, P. Loliencar, K. Taipale, X.
Wang, G. Heo. A survey of statistical learning
techniques as applied to inexpensive pediatric
Obstructive Sleep Apnea data. Preprint, 2020.

I S. Tymochko, K. Singhal, G. Heo. Classifying sleep
states using persistent homology and Markov chain: a
Pilot Study. Preprint, 2020.
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